2022-07-22 15:01:16 +02:00
|
|
|
import numpy as np
|
2022-07-30 21:50:53 +02:00
|
|
|
from HelperClasses import FittingFunction
|
2022-07-22 15:01:16 +02:00
|
|
|
import laserbeamsize as lbs
|
|
|
|
import lmfit
|
|
|
|
from lmfit.minimizer import MinimizerResult
|
|
|
|
|
|
|
|
|
|
|
|
class OneD_Gaussian_fitting(FittingFunction.Fitting):
|
|
|
|
|
|
|
|
def __init__(self, data, x, fitting_function=None):
|
|
|
|
self.data = data
|
|
|
|
self.x = x
|
|
|
|
self.x0 = None
|
|
|
|
self.x_sigma = None
|
|
|
|
self.amplitude = None
|
|
|
|
self.offset = None
|
|
|
|
self.x0_arg = None
|
|
|
|
self.x_sigma_arg = None
|
|
|
|
|
|
|
|
# Use d4sigma method estimating the start point
|
|
|
|
self.find_start_point()
|
|
|
|
|
|
|
|
# Initialize the fitting parameters
|
|
|
|
self.parameters = lmfit.Parameters()
|
|
|
|
self.independent_vars = ['x']
|
|
|
|
if fitting_function is None:
|
|
|
|
self.fitting_function = FittingFunction.oneD_Gaussian
|
|
|
|
self.parameters.add_many(('x0', self.x0, True),
|
|
|
|
('x_sigma', self.x_sigma, True, 0),
|
|
|
|
('A', np.max(self.data) / 2, True),
|
|
|
|
('offset', 0, True))
|
|
|
|
else:
|
|
|
|
self.fitting_function = fitting_function
|
|
|
|
self.parameters.add_many(('x0', self.x0, True),
|
|
|
|
('x_sigma', self.x_sigma, True, 0))
|
|
|
|
|
|
|
|
# Flat the data into 1D array for fitting
|
|
|
|
self.independent_vars_value = {
|
|
|
|
'x': self.x,
|
|
|
|
}
|
|
|
|
|
|
|
|
# Initialize the fitting model
|
|
|
|
super(OneD_Gaussian_fitting, self).__init__(self.data, self.parameters,
|
|
|
|
self.fitting_function, self.independent_vars,
|
|
|
|
self.independent_vars_value)
|
|
|
|
|
|
|
|
def __enter__(self):
|
|
|
|
return self
|
|
|
|
|
|
|
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def find_start_point(self):
|
|
|
|
self.x0_arg = np.argmax(self.data)
|
|
|
|
self.x0 = self.x[int(self.x0_arg)]
|
|
|
|
|
|
|
|
data_max = np.max(self.data)
|
|
|
|
data_sigma = data_max * np.e ** (-0.5)
|
|
|
|
self.x_sigma_arg = self.x0_arg - np.argmax(self.data > data_sigma)
|
|
|
|
self.x_sigma = self.x[int(self.x_sigma_arg)]
|
|
|
|
|
|
|
|
|
|
|
|
class TwoD_Gaussian_fitting(FittingFunction.Fitting):
|
|
|
|
|
|
|
|
def __init__(self, data, x, y):
|
|
|
|
self.data_origin = data
|
|
|
|
self.x_origin = x
|
|
|
|
self.y_origin = y
|
|
|
|
self.x0 = None
|
|
|
|
self.y0 = None
|
|
|
|
self.x_sigma = None
|
|
|
|
self.y_sigma = None
|
|
|
|
self.amplitude = None
|
|
|
|
self.offset = None
|
|
|
|
self.x0_arg = None
|
|
|
|
self.y0_arg = None
|
|
|
|
self.x_sigma_arg = None
|
|
|
|
self.y_sigma_arg = None
|
|
|
|
|
|
|
|
# Use d4sigma method estimating the start point
|
|
|
|
self.find_start_point()
|
|
|
|
|
|
|
|
# Initialize the fitting parameters
|
|
|
|
self.parameters = lmfit.Parameters()
|
|
|
|
self.independent_vars = ['x', 'y']
|
|
|
|
self.fitting_function = FittingFunction.twoD_Gaussian
|
|
|
|
self.parameters.add_many(('x0', self.x0, True),
|
|
|
|
('y0', self.y0, True),
|
|
|
|
('x_sigma', self.x_sigma, True, 0),
|
|
|
|
('y_sigma', self.y_sigma, True, 0),
|
|
|
|
('A', np.max(self.data_origin) / 2, True),
|
|
|
|
('offset', 0, True))
|
|
|
|
|
|
|
|
# Flat the data into 1D array for fitting
|
|
|
|
self.data = self.data_origin.flatten()
|
|
|
|
self.x, self.y = np.meshgrid(x, y)
|
|
|
|
self.x = self.x.flatten()
|
|
|
|
self.y = self.y.flatten()
|
|
|
|
self.independent_vars_value = {
|
|
|
|
'x': self.x,
|
|
|
|
'y': self.y,
|
|
|
|
}
|
|
|
|
|
|
|
|
# Initialize the fitting model
|
|
|
|
super(TwoD_Gaussian_fitting, self).__init__(self.data, self.parameters,
|
|
|
|
self.fitting_function, self.independent_vars,
|
|
|
|
self.independent_vars_value)
|
|
|
|
|
|
|
|
def __enter__(self):
|
|
|
|
return self
|
|
|
|
|
|
|
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def find_start_point(self):
|
|
|
|
self.x0_arg, self.y0_arg, self.x_sigma_arg, self.y_sigma_arg, phi = lbs.beam_size(self.data_origin, max_iter=3)
|
|
|
|
self.x_sigma_arg = self.x_sigma_arg / 4
|
|
|
|
self.y_sigma_arg = self.y_sigma_arg / 4
|
|
|
|
self.x0 = self.x_origin[int(self.x0_arg)]
|
|
|
|
self.y0 = self.y_origin[int(self.y0_arg)]
|
|
|
|
self.x_sigma = self.x_origin[int(self.x_sigma_arg)]
|
|
|
|
self.y_sigma = self.x_origin[int(self.y_sigma_arg)]
|
|
|
|
|
|
|
|
|
|
|
|
class Two_OneD_Gaussian_fitting:
|
|
|
|
|
|
|
|
def __init__(self, data, x, y):
|
|
|
|
self.data = data
|
|
|
|
self.x = x
|
|
|
|
self.y = y
|
|
|
|
self.x0 = None
|
|
|
|
self.y0 = None
|
|
|
|
self.x_sigma = None
|
|
|
|
self.y_sigma = None
|
|
|
|
self.amplitude = None
|
|
|
|
self.offset = None
|
|
|
|
self.x0_arg = None
|
|
|
|
self.y0_arg = None
|
|
|
|
self.x_sigma_arg = None
|
|
|
|
self.y_sigma_arg = None
|
|
|
|
self.x_max_arg = None
|
|
|
|
self.y_max_arg = None
|
|
|
|
|
|
|
|
# Use d4sigma method estimating the start point
|
|
|
|
self.find_start_point()
|
|
|
|
|
|
|
|
# Initialize the fitting parameters
|
|
|
|
self.fitting_function = FittingFunction.twoD_Gaussian
|
|
|
|
self.fitting_x_data = self.data[self.x_max_arg:self.x_max_arg + 1]
|
|
|
|
self.fitting_x_data = self.fitting_x_data.flatten()
|
|
|
|
self.fitting_y_data = self.data[:, self.y_max_arg:self.y_max_arg + 1]
|
|
|
|
self.fitting_y_data = self.fitting_y_data.flatten()
|
|
|
|
self.fitting_x = None
|
|
|
|
self.fitting_y = None
|
|
|
|
|
|
|
|
# Initialize the fitting result
|
|
|
|
self.result = MinimizerResult()
|
|
|
|
self.data_fit = None
|
|
|
|
|
|
|
|
def __enter__(self):
|
|
|
|
return self
|
|
|
|
|
|
|
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def find_start_point(self):
|
|
|
|
# find the position of maximal value in data
|
|
|
|
self.x_max_arg, self.y_max_arg = np.unravel_index(np.argmax(self.data), self.data.shape)
|
|
|
|
|
|
|
|
def run_fitting(self):
|
|
|
|
self.fitting_x = OneD_Gaussian_fitting(self.fitting_x_data, self.x)
|
|
|
|
self.fitting_x.run_fitting()
|
|
|
|
self.fitting_y_data = self.fitting_y_data - self.fitting_x.result.best_values['offset']
|
|
|
|
self.fitting_y_data = self.fitting_y_data / self.fitting_x.result.best_values['A']
|
|
|
|
self.fitting_y = OneD_Gaussian_fitting(self.fitting_y_data, self.y, FittingFunction.oneD_Gaussian_normalized)
|
|
|
|
self.fitting_y.run_fitting()
|
|
|
|
|
|
|
|
self.result.best_values = {
|
|
|
|
'x0': self.fitting_x.result.best_values['x0'],
|
|
|
|
'y0': self.fitting_y.result.best_values['x0'],
|
|
|
|
'x_sigma': self.fitting_x.result.best_values['x_sigma'],
|
|
|
|
'y_sigma': self.fitting_y.result.best_values['x_sigma'],
|
|
|
|
'A': self.fitting_x.result.best_values['A'],
|
|
|
|
'offset': self.fitting_x.result.best_values['offset']
|
|
|
|
}
|
|
|
|
|
|
|
|
def get_fitting_data(self, data_shape):
|
|
|
|
data = self.data.flatten()
|
|
|
|
x, y = np.meshgrid(self.x, self.y)
|
|
|
|
x = x.flatten()
|
|
|
|
y = y.flatten()
|
|
|
|
fit_function_kws = {
|
|
|
|
'x': x,
|
|
|
|
'y': y,
|
|
|
|
}
|
|
|
|
self.data_fit = self.fitting_function(**fit_function_kws, **self.result.best_values)
|
|
|
|
self.data_fit = self.data_fit.reshape(data_shape)
|
|
|
|
|
|
|
|
return self.data_fit
|