Compare commits
21 Commits
joschka_de
...
master
Author | SHA1 | Date | |
---|---|---|---|
7a0d102850 | |||
81bd1ea4ee | |||
afe7a5907e | |||
621414127a | |||
62ad8157b9 | |||
e6e20a8ae3 | |||
d26039153b | |||
aa13f41dd9 | |||
1750c329ee | |||
d84e6da902 | |||
e19d1c272a | |||
e285ad2cab | |||
16c6ba7d86 | |||
a841f10379 | |||
8a96cb841d | |||
602edcd6d5 | |||
80d1de69f7 | |||
3c8c071d8d | |||
f6dd77034d | |||
81745eb923 | |||
300875bb3e |
852
20230630_Data_Analysis copy.ipynb
Normal file
852
20230630_Data_Analysis copy.ipynb
Normal file
File diff suppressed because one or more lines are too long
4201
20230630_Data_Analysis.ipynb
Normal file
4201
20230630_Data_Analysis.ipynb
Normal file
File diff suppressed because one or more lines are too long
5681
20230731_Data_Analysis_onlyFit.ipynb
Normal file
5681
20230731_Data_Analysis_onlyFit.ipynb
Normal file
File diff suppressed because one or more lines are too long
5955
AccordionLattice_20230801.ipynb
Normal file
5955
AccordionLattice_20230801.ipynb
Normal file
File diff suppressed because one or more lines are too long
2614
AccordionLattice_20230808.ipynb
Normal file
2614
AccordionLattice_20230808.ipynb
Normal file
File diff suppressed because one or more lines are too long
@ -25,11 +25,16 @@ from scipy.special import erf, erfc
|
||||
from scipy.special import gamma as gamfcn
|
||||
from scipy.special import wofz
|
||||
from scipy.optimize import curve_fit
|
||||
from scipy.interpolate import CubicSpline
|
||||
from scipy.ndimage import gaussian_filter, rotate
|
||||
import scipy.constants as const
|
||||
|
||||
import xarray as xr
|
||||
|
||||
import copy
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
log2 = log(2)
|
||||
s2pi = sqrt(2*pi)
|
||||
@ -82,40 +87,100 @@ def two_gaussian2d(x, y=0.0, A_amplitude=1.0, A_centerx=0.0, A_centery=0.0, A_si
|
||||
return z
|
||||
|
||||
|
||||
def polylog_tab(pow, x, order=100):
|
||||
"""Calculationg the polylog sum_i(x^i/i^pow), up to the order-th element of the sum
|
||||
|
||||
:param pow: power in denominator of sum
|
||||
:type pow: int (can be float)
|
||||
:param x: argument of Polylogarithm
|
||||
:type x: float or 1D numpy array
|
||||
:return: value of polylog(x)
|
||||
:rtype: same as x, float or 1D numpy array
|
||||
"""
|
||||
|
||||
sum = 0
|
||||
for k in range(1,order):
|
||||
sum += x ** k /k **pow
|
||||
return sum
|
||||
|
||||
# Creating array for interpolation
|
||||
x_int = np.linspace(0, 1.00001, 100000)
|
||||
poly_tab = polylog_tab(2,x_int)
|
||||
|
||||
# Creating function interpolating between the Polylog values calculated before
|
||||
polylog_int = CubicSpline(x_int, poly_tab)
|
||||
|
||||
|
||||
def thermal(x, x0, amp, sigma):
|
||||
"""Calculating thermal density distribution in 1D (scaled such that if amp=1, return = 1)
|
||||
|
||||
:param x: axis
|
||||
:type x: float or 1d array
|
||||
:param x0: position of peak along axis
|
||||
:type x0: float
|
||||
:param amp: amplitude of function
|
||||
:type amp: float
|
||||
:param sigma: width of function
|
||||
:type sigma: float
|
||||
:return: calculated function value
|
||||
:rtype: float or 1D array
|
||||
"""
|
||||
res = np.exp(-0.5 * (x-x0)**2 / sigma**2)
|
||||
return amp/1.643 * polylog_int(res)
|
||||
|
||||
|
||||
def Thomas_Fermi_1d(x, x0, amp, sigma):
|
||||
res = (1- ((x-x0)/sigma)**2)
|
||||
res = np.where(res > 0, res, 0)
|
||||
res = res**(3/2)
|
||||
return amp * res
|
||||
|
||||
|
||||
def density_1d(x, x0_bec, x0_th, amp_bec, amp_th, sigma_bec, sigma_th):
|
||||
return thermal(x, x0_th, amp_th, sigma_th) + Thomas_Fermi_1d(x, x0_bec, amp_bec, sigma_bec)
|
||||
|
||||
|
||||
def polylog(pow, x):
|
||||
order = 15
|
||||
sum = 0
|
||||
for k in range(1,order):
|
||||
sum += x ** k /k **pow
|
||||
return sum
|
||||
|
||||
|
||||
def ThomasFermi_2d(x, y=0.0, centerx=0.0, centery=0.0, amplitude=1.0, sigmax=1.0, sigmay=1.0):
|
||||
res = (1- ((x-centerx)/(sigmax))**2 - ((y-centery)/(sigmay))**2)**(3 / 2)
|
||||
return amplitude * 5 / 2 / np.pi / max(tiny, sigmax * sigmay) * np.where(res > 0, res, 0)
|
||||
|
||||
|
||||
def polylog(power, numerator):
|
||||
|
||||
order = 2
|
||||
|
||||
dataShape = numerator.shape
|
||||
numerator = np.tile(numerator, (order, 1))
|
||||
numerator = np.power(numerator.T, np.arange(1, order+1)).T
|
||||
|
||||
denominator = np.arange(1, order+1)
|
||||
denominator = np.tile(denominator, (dataShape[0], 1))
|
||||
denominator = denominator.T
|
||||
|
||||
data = numerator/ np.power(denominator, power)
|
||||
|
||||
return np.sum(data, axis=0)
|
||||
res = (1- ((x-centerx)/(sigmax))**2 - ((y-centery)/(sigmay))**2)
|
||||
res = np.where(res > 0, res, 0)
|
||||
res = res**(3/2)
|
||||
return amplitude * res
|
||||
|
||||
|
||||
def polylog2_2d(x, y=0.0, centerx=0.0, centery=0.0, amplitude=1.0, sigmax=1.0, sigmay=1.0):
|
||||
## Approximation of the polylog function with 2D gaussian as argument. -> discribes the thermal part of the cloud
|
||||
return amplitude / 2 / np.pi / 1.20206 / max(tiny, sigmax * sigmay) * polylog(2, np.exp( -((x-centerx)**2/(2 * (sigmax)**2))-((y-centery)**2/( 2 * (sigmay)**2)) ))
|
||||
return amplitude/1.643 * polylog_int(np.exp( -((x-centerx)**2/(2 * sigmax**2))-((y-centery)**2/( 2 * sigmay**2)) ))
|
||||
|
||||
def rotate_coord(x,y, rot_angle):
|
||||
|
||||
rot_angle *= 2*np.pi/360
|
||||
x_og = x
|
||||
x = x_og * np.cos(rot_angle) + y * np.sin(rot_angle)
|
||||
y = -x_og * np.sin(rot_angle) + y * np.cos(rot_angle)
|
||||
return x, y
|
||||
|
||||
def density_profile_BEC_2d(x, y=0.0, amp_bec=1.0, amp_th=1.0, x0_bec=0.0, y0_bec=0.0, x0_th=0.0, y0_th=0.0,
|
||||
sigmax_bec=1.0, sigmay_bec=1.0, sigma_th=1.0, rot_angle=None):
|
||||
rot_angle *= -1
|
||||
if rot_angle is not None:
|
||||
x, y = rotate_coord(x,y, rot_angle)
|
||||
x0_bec, y0_bec = rotate_coord(x0_bec, y0_bec, rot_angle)
|
||||
x0_th, y0_th = rotate_coord(x0_th, y0_th, rot_angle)
|
||||
|
||||
|
||||
def density_profile_BEC_2d(x, y=0.0, BEC_amplitude=1.0, thermal_amplitude=1.0, BEC_centerx=0.0, BEC_centery=0.0, thermal_centerx=0.0, thermal_centery=0.0,
|
||||
BEC_sigmax=1.0, BEC_sigmay=1.0, thermal_sigmax=1.0, thermal_sigmay=1.0):
|
||||
|
||||
return ThomasFermi_2d(x=x, y=y, centerx=BEC_centerx, centery=BEC_centery,
|
||||
amplitude=BEC_amplitude, sigmax=BEC_sigmax, sigmay=BEC_sigmay
|
||||
) + polylog2_2d(x=x, y=y, centerx=thermal_centerx, centery=thermal_centery,
|
||||
amplitude=thermal_amplitude, sigmax=thermal_sigmax, sigmay=thermal_sigmay)
|
||||
return ThomasFermi_2d(x=x, y=y, centerx=x0_bec, centery=y0_bec,
|
||||
amplitude=amp_bec, sigmax=sigmax_bec, sigmay=sigmay_bec
|
||||
) + polylog2_2d(x=x, y=y, centerx=x0_th, centery=y0_th,
|
||||
amplitude=amp_th, sigmax=sigma_th,sigmay=sigma_th)
|
||||
|
||||
|
||||
class GaussianWithOffsetModel(Model):
|
||||
@ -318,115 +383,479 @@ class ThomasFermi2dModel(Model):
|
||||
return update_param_vals(pars, self.prefix, **kwargs)
|
||||
|
||||
|
||||
class DensityProfileBEC2dModel(Model):
|
||||
|
||||
fwhm_factor = 2*np.sqrt(2*np.log(2))
|
||||
height_factor = 1./2*np.pi
|
||||
|
||||
def __init__(self, independent_vars=['x', 'y'], prefix='', nan_policy='raise',
|
||||
**kwargs):
|
||||
class DensityProfileBEC2dModel(lmfit.Model):
|
||||
""" Fitting class to do 2D bimodal fit on OD of absorption images
|
||||
"""
|
||||
def __init__(self,
|
||||
independent_vars=['x', 'y'],
|
||||
prefix='',
|
||||
nan_policy='raise',
|
||||
atom_n_conv=144,
|
||||
pre_check=False,
|
||||
post_check=False,
|
||||
is_debug=False,
|
||||
**kwargs
|
||||
):
|
||||
kwargs.update({'prefix': prefix, 'nan_policy': nan_policy,
|
||||
'independent_vars': independent_vars})
|
||||
|
||||
self.atom_n_conv = atom_n_conv
|
||||
self.pre_check = pre_check
|
||||
self.post_check = post_check
|
||||
self.is_debug=is_debug
|
||||
super().__init__(density_profile_BEC_2d, **kwargs)
|
||||
self._set_paramhints_prefix()
|
||||
|
||||
def _set_paramhints_prefix(self):
|
||||
# self.set_param_hint('BEC_sigmax', min=0)
|
||||
self.set_param_hint('deltax', min=0)
|
||||
self.set_param_hint('BEC_sigmax', expr=f'3 * {self.prefix}thermal_sigmax - {self.prefix}deltax')
|
||||
self.set_param_hint('amp_bec', min=0)
|
||||
self.set_param_hint('amp_th', min=0)
|
||||
self.set_param_hint('x0_bec', min=0)
|
||||
self.set_param_hint('y0_bec', min=0)
|
||||
self.set_param_hint('x0_th', min=0)
|
||||
self.set_param_hint('y0_th', min=0)
|
||||
self.set_param_hint('sigmax_bec', min=0)
|
||||
self.set_param_hint('sigmay_bec', min=0)
|
||||
self.set_param_hint('sigma_th', min=0)
|
||||
|
||||
self.set_param_hint('BEC_sigmay', min=0)
|
||||
self.set_param_hint('thermal_sigmax', min=0)
|
||||
# self.set_param_hint('thermal_sigmay', min=0)
|
||||
self.set_param_hint('BEC_amplitude', min=0)
|
||||
self.set_param_hint('thermal_amplitude', min=0)
|
||||
self.set_param_hint('rot_angle', min=-90, max=90)
|
||||
|
||||
self.set_param_hint('thermalAspectRatio', min=0.8, max=1.2)
|
||||
self.set_param_hint('thermal_sigmay', expr=f'{self.prefix}thermalAspectRatio * {self.prefix}thermal_sigmax')
|
||||
self.set_param_hint('atom_number_bec', expr=f'{self.prefix}amp_bec / 5 * 2 * 3.14159265359 * {self.prefix}sigmax_bec * {self.prefix}sigmay_bec')
|
||||
self.set_param_hint('atom_number_th', expr=f'{self.prefix}amp_th * 2 * 3.14159265359 * 1.20206 / 1.643 * {self.prefix}sigma_th * {self.prefix}sigma_th')
|
||||
self.set_param_hint('condensate_fraction', expr=f'{self.prefix}atom_number_bec / ({self.prefix}atom_number_bec + {self.prefix}atom_number_th)')
|
||||
|
||||
# self.set_param_hint('betax', value=0)
|
||||
# self.set_param_hint('BEC_centerx', expr=f'{self.prefix}thermal_sigmax - {self.prefix}betax')
|
||||
def guess(self, data, x, y, rot_angle=0, vary_rot=False, is_debug=False, pre_check=False, post_check=False, **kwargs):
|
||||
"""Estimate and create initial model parameters for 2d bimodal fit, by doing a 1d bimodal fit along an integrated slice of the image
|
||||
|
||||
self.set_param_hint('condensate_fraction', expr=f'{self.prefix}BEC_amplitude / ({self.prefix}BEC_amplitude + {self.prefix}thermal_amplitude)')
|
||||
:param data: Flattened 2d array, in form [a_00, a_10, a_20, ..., a_01, a_02, .. ,a_XY] with a_xy, x_dim=X, y_dim=Y
|
||||
:type data: 1d numpy array
|
||||
:param x: flattened X output of np.meshgrid(x_axis,y_axis) in form: [x1, x2, .., xX, x1, x2, .., xX, .. Y times ..]
|
||||
:type x: 1d numpy array
|
||||
:param y: flattened Y output of np.meshgrid(x_axis,y_axis) in form: [y1, y1, .., y1 (X times), y2, y2, .., y2 (X times), .. Y times ..]
|
||||
:type y: 1d numpy array
|
||||
:param rot_angle: angle in degrees, The image is rotated counterclockwise by this angle to match the two axes of the cloud with x and y
|
||||
for the guessing procedure. The 2d-fit is done by rotating the fitting function clockwise with this angle
|
||||
:type rot_angle: float
|
||||
:param vary_rot: if True the angle is varied in the 2d-fit
|
||||
:type vary_rot: bool, optional
|
||||
:param pre_check: if True the amplitude of the 1d fit is used to guess if the image is purely BEC or thermal and
|
||||
the corresponding amplitude of the 2d fit is set to zero and not varied to speed up the fitting, defaults to False
|
||||
:type pre_check: bool, optional
|
||||
:param post_check: if True, after doing a 2d bimodal fit the number of atoms surrounding the fitted BEC is counted and if the value is
|
||||
below a certain threshhold the fit is done again with the thermal amplitude set to zero, defaults to False
|
||||
:type post_check: bool, optional
|
||||
:return: initial parameters for 2d fit
|
||||
:rtype: params object (lmfit)
|
||||
"""
|
||||
self.pre_check = pre_check
|
||||
self.post_check = post_check
|
||||
self.is_debug = is_debug
|
||||
|
||||
def guess(self, data, x, y, negative=False, pureBECThreshold=0.5, noBECThThreshold=0.0, **kwargs):
|
||||
"""Estimate initial model parameter values from data."""
|
||||
fitModel = TwoGaussian2dModel()
|
||||
pars = fitModel.guess(data, x=x, y=y, negative=negative)
|
||||
pars['A_amplitude'].set(min=0)
|
||||
pars['B_amplitude'].set(min=0)
|
||||
pars['A_centerx'].set(min=pars['A_centerx'].value - 3 * pars['A_sigmax'],
|
||||
max=pars['A_centerx'].value + 3 * pars['A_sigmax'],)
|
||||
pars['A_centery'].set(min=pars['A_centery'].value - 3 * pars['A_sigmay'],
|
||||
max=pars['A_centery'].value + 3 * pars['A_sigmay'],)
|
||||
pars['B_centerx'].set(min=pars['B_centerx'].value - 3 * pars['B_sigmax'],
|
||||
max=pars['B_centerx'].value + 3 * pars['B_sigmax'],)
|
||||
pars['B_centery'].set(min=pars['B_centery'].value - 3 * pars['B_sigmay'],
|
||||
max=pars['B_centery'].value + 3 * pars['B_sigmay'],)
|
||||
# reshaping the image to 2D in the form [[a_00, a_01, .., a_0Y], [a_10,.., a_1Y], .., [a_X0, .., a_XY]], with a_xy
|
||||
x_width = len(np.unique(x))
|
||||
y_width = len(np.unique(y))
|
||||
x_1d = np.linspace(x[0], x[-1], x_width)
|
||||
y_1d = np.linspace(y[0], y[-1], y_width)
|
||||
|
||||
fitResult = fitModel.fit(data, x=x, y=y, params=pars, **kwargs)
|
||||
pars_guess = fitResult.params
|
||||
data = np.reshape(data, (y_width, x_width))
|
||||
data = data.T
|
||||
|
||||
BEC_amplitude = pars_guess['A_amplitude'].value
|
||||
thermal_amplitude = pars_guess['B_amplitude'].value
|
||||
if is_debug:
|
||||
X, Y = np.meshgrid(x_1d,y_1d)
|
||||
plt.pcolormesh(X,Y, data.T, cmap='jet')
|
||||
plt.gca().set_aspect('equal')
|
||||
plt.title(f'Input data')
|
||||
plt.xlabel('x_axis')
|
||||
plt.ylabel('y_axis')
|
||||
plt.show()
|
||||
|
||||
pars = self.make_params(BEC_amplitude=BEC_amplitude,
|
||||
thermal_amplitude=thermal_amplitude,
|
||||
BEC_centerx=pars_guess['A_centerx'].value, BEC_centery=pars_guess['A_centery'].value,
|
||||
# BEC_sigmax=(pars_guess['A_sigmax'].value / 2.355),
|
||||
deltax = 3 * (pars_guess['B_sigmax'].value * s2) - (pars_guess['A_sigmax'].value / 2.355),
|
||||
BEC_sigmay=(pars_guess['A_sigmay'].value / 2.355),
|
||||
thermal_centerx=pars_guess['B_centerx'].value, thermal_centery=pars_guess['B_centery'].value,
|
||||
thermal_sigmax=(pars_guess['B_sigmax'].value * s2),
|
||||
thermalAspectRatio=(pars_guess['B_sigmax'].value * s2) / (pars_guess['B_sigmay'].value * s2)
|
||||
# thermal_sigmay=(pars_guess['B_sigmay'].value * s2)
|
||||
)
|
||||
# the image is rotated counterclockwise by rot_angle, CAREFUL: The image has the form a_xy (last coordinate y) and therefore the rotation is done counter-clockwise.
|
||||
# Doing the same with a standard image with a_yx rotates it clockwise!
|
||||
if rot_angle != 0:
|
||||
data = rotate(data, rot_angle, reshape=False)
|
||||
|
||||
nBEC = pars[f'{self.prefix}BEC_amplitude'] / 2 / np.pi / 5.546 / pars[f'{self.prefix}BEC_sigmay'] / pars[f'{self.prefix}BEC_sigmax']
|
||||
if (pars[f'{self.prefix}condensate_fraction']>0.95) and (np.max(data) > 1.05 * nBEC):
|
||||
temp = ((np.max(data) - nBEC) * s2pi * pars[f'{self.prefix}thermal_sigmay'] / pars[f'{self.prefix}thermal_sigmax'])
|
||||
if temp > pars[f'{self.prefix}BEC_amplitude']:
|
||||
pars[f'{self.prefix}thermal_amplitude'].set(value=pars[f'{self.prefix}BEC_amplitude'] / 2)
|
||||
shape = np.shape(data)
|
||||
if self.is_debug:
|
||||
print(f'shape: {shape}')
|
||||
max_width = np.max(shape)
|
||||
|
||||
# binarizing image to guess BEC width and calculate center
|
||||
thresh = self.calc_thresh(data,thresh_val=0.5)
|
||||
# calculating center of cloud by statistical distribution of binarized image
|
||||
center_pix = self.calc_cen_pix(thresh)
|
||||
center = self.center_pix_conv(center_pix, x_1d, y_1d)
|
||||
# guessing BEC width, or better of width of center blob if no BEC is present
|
||||
BEC_width_guess = self.guess_BEC_width(thresh, center_pix)
|
||||
|
||||
# plot binarized image and center position for debugging
|
||||
if self.is_debug:
|
||||
X, Y = np.meshgrid(x_1d,y_1d)
|
||||
plt.pcolormesh(X,Y, thresh.T, cmap='jet')
|
||||
plt.plot(center[0], center[1], marker='x', markersize=25, color='green')
|
||||
plt.gca().set_aspect('equal')
|
||||
plt.title(f'Binarized image for guessing BEC width + center position (BEC_width: x={BEC_width_guess[0]:.0f}, y={BEC_width_guess[1]:.0f} pix)')
|
||||
plt.xlabel('x_axis')
|
||||
plt.ylabel('y_axis')
|
||||
plt.show()
|
||||
|
||||
# The 1d fit is done along the short axis of the BEC (decided via the BEC_width guess)
|
||||
if BEC_width_guess[0] < BEC_width_guess[1]:
|
||||
if self.is_debug:
|
||||
print(f'x smaller y, 1d fit along x')
|
||||
s_width_ind = 0
|
||||
x_fit = x_1d
|
||||
# slice of the image along the short BEC axis with width of BEC width is taken
|
||||
X_guess = np.sum(data[:, round(center_pix[1] - BEC_width_guess[1]/2) : round(center_pix[1] + BEC_width_guess[1]/2)], 1) / len(data[0,round(center_pix[1] - BEC_width_guess[1]/2) : round(center_pix[1] + BEC_width_guess[1]/2)])
|
||||
else:
|
||||
if self.is_debug:
|
||||
print(f'y smaller x, 1d fit along y')
|
||||
s_width_ind = 1
|
||||
x_fit = y_1d
|
||||
X_guess = np.sum(data[round(center_pix[0] - BEC_width_guess[0]/2) : round(center_pix[0] + BEC_width_guess[0]/2), :], 0) / len(data[0,round(center_pix[0] - BEC_width_guess[0]/2) : round(center_pix[0] + BEC_width_guess[0]/2)])
|
||||
|
||||
|
||||
# Creating 1d fit init params + Performing fit
|
||||
|
||||
|
||||
max_val = np.max(X_guess)
|
||||
|
||||
fitmodel_1d = lmfit.Model(density_1d, independent_vars=['x'])
|
||||
params_1d = lmfit.Parameters()
|
||||
params_1d.add_many(
|
||||
('x0_bec', center[s_width_ind], True, center[s_width_ind]-10, center[s_width_ind]+10),
|
||||
('x0_th',center[s_width_ind], True, center[s_width_ind]-10, center[s_width_ind]+10),
|
||||
('amp_bec', 0.5 * max_val, True, 0, 1.3 * max_val),
|
||||
('amp_th', 0.5 * max_val, True, 0, 1.3 * max_val),
|
||||
('deltax', 3*BEC_width_guess[s_width_ind], True, 0, max_width),
|
||||
# ('sigma_bec',BEC_width_guess[i,j,0]/1.22, True, 0, 50)
|
||||
('sigma_bec',BEC_width_guess[s_width_ind]/1.22, True, 0, BEC_width_guess[s_width_ind]*2)
|
||||
)
|
||||
params_1d.add('sigma_th', 3*BEC_width_guess[0], min=0, expr=f'0.632*sigma_bec + 0.518*deltax')
|
||||
|
||||
|
||||
res_1d = fitmodel_1d.fit(X_guess, x=x_fit, params=params_1d)
|
||||
bval_1d = res_1d.best_values
|
||||
|
||||
if self.is_debug:
|
||||
print('')
|
||||
print('1d fit initialization')
|
||||
print(f'center = {center}')
|
||||
print(f'BEC widths: {BEC_width_guess}')
|
||||
print('')
|
||||
print('1d init fit values')
|
||||
params_1d.pretty_print()
|
||||
print('1d fitted values')
|
||||
self.print_bval(res_1d)
|
||||
|
||||
plt.plot(x_fit, X_guess, label='1d int. data')
|
||||
plt.plot(x_fit, density_1d(x_fit,**bval_1d), label='bimodal fit')
|
||||
plt.plot(x_fit, thermal(x_fit,x0=bval_1d['x0_th'], amp=bval_1d['amp_th'], sigma=bval_1d['sigma_th']), label='thermal part')
|
||||
plt.legend()
|
||||
if s_width_ind==0:
|
||||
plt.title('1d fit of data along x-axis')
|
||||
plt.xlabel('x_')
|
||||
else:
|
||||
pars[f'{self.prefix}thermal_amplitude'].set(value=temp * 10)
|
||||
plt.title('1d fit of data along y-axis')
|
||||
plt.xlabel('y_axis')
|
||||
plt.show()
|
||||
|
||||
if BEC_amplitude / (thermal_amplitude + BEC_amplitude) > pureBECThreshold:
|
||||
pars[f'{self.prefix}thermal_amplitude'].set(value=0)
|
||||
pars[f'{self.prefix}BEC_amplitude'].set(value=(thermal_amplitude + BEC_amplitude))
|
||||
# scaling amplitudes of 1d fit with the maximum value of blurred 2d data
|
||||
amp_conv_1d_2d = np.max(gaussian_filter(data, sigma=1)) / (bval_1d['amp_bec'] + bval_1d['amp_th'])
|
||||
max_val = np.max(data)
|
||||
|
||||
if BEC_amplitude / (thermal_amplitude + BEC_amplitude) < noBECThThreshold:
|
||||
pars[f'{self.prefix}BEC_amplitude'].set(value=0)
|
||||
pars[f'{self.prefix}thermal_amplitude'].set(value=(thermal_amplitude + BEC_amplitude))
|
||||
params = self.make_params()
|
||||
|
||||
pars[f'{self.prefix}BEC_centerx'].set(
|
||||
min=pars[f'{self.prefix}BEC_centerx'].value - 10 * pars[f'{self.prefix}BEC_sigmax'].value,
|
||||
max=pars[f'{self.prefix}BEC_centerx'].value + 10 * pars[f'{self.prefix}BEC_sigmax'].value,
|
||||
)
|
||||
# if precheck enabled and amp_th is 7x higher than amp_bec (value might be changed), amplitude of BEC in 2d fit is set to zero
|
||||
if bval_1d['amp_th']/bval_1d['amp_bec'] > 7 and self.pre_check:
|
||||
print(f'Image seems to be purely thermal (guessed from 1d fit amplitude)')
|
||||
|
||||
pars[f'{self.prefix}thermal_centerx'].set(
|
||||
min=pars[f'{self.prefix}thermal_centerx'].value - 3 * pars[f'{self.prefix}thermal_sigmax'].value,
|
||||
max=pars[f'{self.prefix}thermal_centerx'].value + 3 * pars[f'{self.prefix}thermal_sigmax'].value,
|
||||
)
|
||||
params[f'{self.prefix}amp_bec'].set(value=0, vary=False)
|
||||
params[f'{self.prefix}amp_th'].set(value=amp_conv_1d_2d * bval_1d['amp_th'], max=1.3 * max_val, vary=True)
|
||||
params[f'{self.prefix}x0_bec'].set(value=1, vary=False)
|
||||
params[f'{self.prefix}y0_bec'].set(value=1, vary=False)
|
||||
params[f'{self.prefix}x0_th'].set(value=center[0], min=center[0] -10, max=center[0] + 10, vary=True)
|
||||
params[f'{self.prefix}y0_th'].set(value=center[1], min=center[1] -10, max=center[1] + 10, vary=True)
|
||||
params[f'{self.prefix}sigmax_bec'].set(value=1, vary=False)
|
||||
params[f'{self.prefix}sigmay_bec'].set(value=1, vary=False)
|
||||
params[f'{self.prefix}sigma_th'].set(value=bval_1d['sigma_th'], max=max_width, vary=True)
|
||||
|
||||
pars[f'{self.prefix}BEC_centery'].set(
|
||||
min=pars[f'{self.prefix}BEC_centery'].value - 10 * pars[f'{self.prefix}BEC_sigmay'].value,
|
||||
max=pars[f'{self.prefix}BEC_centery'].value + 10 * pars[f'{self.prefix}BEC_sigmay'].value,
|
||||
)
|
||||
# if precheck enabled and amp_bec is 10x higher than amp_th (value might be changed), amplitude of thermal part in 2d fit is set to zero
|
||||
elif bval_1d['amp_bec']/bval_1d['amp_th'] > 10 and self.pre_check:
|
||||
print('Image seems to be pure BEC (guessed from 1d fit amplitude)')
|
||||
|
||||
pars[f'{self.prefix}thermal_centery'].set(
|
||||
min=pars[f'{self.prefix}thermal_centery'].value - 3 * pars[f'{self.prefix}thermal_sigmay'].value,
|
||||
max=pars[f'{self.prefix}thermal_centery'].value + 3 * pars[f'{self.prefix}thermal_sigmay'].value,
|
||||
)
|
||||
params[f'{self.prefix}amp_bec'].set(value=amp_conv_1d_2d * bval_1d['amp_bec'], max=1.3 * max_val, vary=True)
|
||||
params[f'{self.prefix}amp_th'].set(value=0, vary=False)
|
||||
params[f'{self.prefix}x0_bec'].set(value=center[0], min=center[0] -10, max=center[0] + 10, vary=True)
|
||||
params[f'{self.prefix}y0_bec'].set(value=center[1], min=center[1] -10, max=center[1] + 10, vary=True)
|
||||
params[f'{self.prefix}x0_th'].set(value=1, vary=False)
|
||||
params[f'{self.prefix}y0_th'].set(value=1, vary=False)
|
||||
params[f'{self.prefix}sigma_th'].set(value=1, vary=False)
|
||||
|
||||
pars[f'{self.prefix}BEC_sigmay'].set(
|
||||
max=5 * pars[f'{self.prefix}BEC_sigmay'].value,
|
||||
)
|
||||
if s_width_ind == 0:
|
||||
params[f'{self.prefix}sigmax_bec'].set(value=bval_1d['sigma_bec'], max= 2*BEC_width_guess[0], vary=True)
|
||||
params[f'{self.prefix}sigmay_bec'].set(value=BEC_width_guess[1]/1.22, max= 2*BEC_width_guess[1], vary=True)
|
||||
elif s_width_ind == 1:
|
||||
params[f'{self.prefix}sigmax_bec'].set(value=BEC_width_guess[0]/1.22, max= 2*BEC_width_guess[0], vary=True)
|
||||
params[f'{self.prefix}sigmay_bec'].set(value=bval_1d['sigma_bec'], max= 2*BEC_width_guess[1], vary=True)
|
||||
else:
|
||||
print('Error in small width BEC recogintion, s_width_ind should be 0 or 1')
|
||||
|
||||
pars[f'{self.prefix}thermal_sigmax'].set(
|
||||
max=5 * pars[f'{self.prefix}thermal_sigmax'].value,
|
||||
)
|
||||
# params for normal 2d bimodal fit are initialized
|
||||
else:
|
||||
params[f'{self.prefix}amp_bec'].set(value=amp_conv_1d_2d * bval_1d['amp_bec'], max=1.3 * max_val, vary=True)
|
||||
params[f'{self.prefix}amp_th'].set(value=amp_conv_1d_2d * bval_1d['amp_th'], max=1.3 * max_val, vary=True)
|
||||
params[f'{self.prefix}x0_bec'].set(value=center[0], min=center[0] -10, max=center[0] + 10, vary=True)
|
||||
params[f'{self.prefix}y0_bec'].set(value=center[1], min=center[1] -10, max=center[1] + 10, vary=True)
|
||||
params[f'{self.prefix}x0_th'].set(value=center[0], min=center[0] -10, max=center[0] + 10, vary=True)
|
||||
params[f'{self.prefix}y0_th'].set(value=center[1], min=center[1] -10, max=center[1] + 10, vary=True)
|
||||
params[f'{self.prefix}sigma_th'].set(value=bval_1d['sigma_th'], max=max_width, vary=True)
|
||||
|
||||
return update_param_vals(pars, self.prefix, **kwargs)
|
||||
if s_width_ind == 0:
|
||||
params[f'{self.prefix}sigmax_bec'].set(value=bval_1d['sigma_bec'], max= 2*BEC_width_guess[0], vary=True)
|
||||
params[f'{self.prefix}sigmay_bec'].set(value=BEC_width_guess[1]/1.22, max= 2*BEC_width_guess[1], vary=True)
|
||||
elif s_width_ind == 1:
|
||||
params[f'{self.prefix}sigmax_bec'].set(value=BEC_width_guess[0]/1.22, max= 2*BEC_width_guess[0], vary=True)
|
||||
params[f'{self.prefix}sigmay_bec'].set(value=bval_1d['sigma_bec'], max= 2*BEC_width_guess[1], vary=True)
|
||||
else:
|
||||
print('Error in small width BEC recogintion, s_width_ind should be 0 or 1')
|
||||
|
||||
params[f'{self.prefix}rot_angle'].set(value=rot_angle, min=rot_angle-30, max=rot_angle+30, vary=vary_rot)
|
||||
|
||||
if self.is_debug:
|
||||
print('')
|
||||
print('Init Params')
|
||||
params.pretty_print()
|
||||
print('')
|
||||
return lmfit.models.update_param_vals(params, self.prefix, **kwargs)
|
||||
|
||||
|
||||
def fit(self, data, **kwargs):
|
||||
"""fitting function overwrites parent class fitting function of lmfit, in order to check (if post_check is enabled)
|
||||
if thermal fit completely lies in BEC fit by counting sourrounding number of atoms and comparing it to threshold value
|
||||
|
||||
:param data: Flattened 2d array, in form [a_00, a_10, a_20, ..., a_01, a_02, .. ,a_XY] with a_xy, x_dim=X, y_dim=Y
|
||||
:type data: 1d numpy array
|
||||
:return: result of 2d fit
|
||||
:rtype: result object (lmfit)
|
||||
"""
|
||||
|
||||
res = super().fit(data, **kwargs)
|
||||
|
||||
if self.is_debug:
|
||||
print('bval first fit')
|
||||
self.print_bval(res)
|
||||
|
||||
bval = res.best_values
|
||||
# Do described post_check if enabled
|
||||
|
||||
if res.params['amp_bec'].vary and res.params['amp_th'].vary and bval['amp_bec']>0.5*bval['amp_th'] and self.post_check:
|
||||
|
||||
# creating image by cutting out region around BEC and counting number of atoms
|
||||
sigma_cut = max(bval['sigmay_bec'], bval['sigmax_bec'])
|
||||
tf_fit = ThomasFermi_2d(kwargs['x'],kwargs['y'],centerx=bval['x0_bec'], centery=bval['y0_bec'], amplitude=bval['amp_bec'], sigmax=bval['sigmax_bec'], sigmay=bval['sigmay_bec'])
|
||||
tf_fit_2 = ThomasFermi_2d(kwargs['x'],kwargs['y'],centerx=bval['x0_bec'], centery=bval['y0_bec'], amplitude=bval['amp_bec'], sigmax=1.5 * sigma_cut, sigmay=1.5*sigma_cut)
|
||||
mask = np.where(tf_fit > 0, np.nan, data)
|
||||
mask = np.where(tf_fit_2 > 0, mask, np.nan)
|
||||
|
||||
N_c = np.nansum(mask)
|
||||
# conversion N_count to Pixels
|
||||
N_a = self.atom_n_conv * N_c
|
||||
|
||||
#TODO change fixed threshhold to variable
|
||||
# If number of atoms around BEC is small the image is guessed to be purely BEC and another 2d fit is performed with setting the thermal amplitude to zero
|
||||
if N_a < 6615:
|
||||
print('No thermal part detected, performing fit without thermal function')
|
||||
params = res.params
|
||||
params[f'{self.prefix}amp_th'].set(value=0, vary=False)
|
||||
params[f'{self.prefix}x0_th'].set(value=1, vary=False)
|
||||
params[f'{self.prefix}y0_th'].set(value=1, vary=False)
|
||||
params[f'{self.prefix}sigma_th'].set(value=1, vary=False)
|
||||
|
||||
res = super().fit(data, x=kwargs['x'], y=kwargs['y'], params=params)
|
||||
|
||||
return res
|
||||
|
||||
return res
|
||||
|
||||
def calc_thresh(self, data, thresh_val=0.3, sigma=0.4):
|
||||
"""Returns thresholded binary image after blurring to guess BEC size
|
||||
|
||||
:param data: 2d image
|
||||
:type data: 2d numpy array
|
||||
:param thresh_val: relative threshhold value for binarization with respect to maximum of blurred image
|
||||
:param sigma: sigma of gaussian blur filter (see scipy.ndimage.gaussian_filter)
|
||||
:return: binary 2d image
|
||||
:rtype: 2d numpy array
|
||||
"""
|
||||
shape = np.shape(data)
|
||||
thresh = np.zeros(shape)
|
||||
|
||||
blurred = gaussian_filter(data, sigma=sigma)
|
||||
|
||||
thresh = np.where(blurred < np.max(blurred)*thresh_val, 0, 1)
|
||||
|
||||
return thresh
|
||||
|
||||
def calc_cen_pix(self, thresh1):
|
||||
"""Calculating the center (in pixel) of a blob (atom cloud) in a binarized image by first calculating the probability distribution along both axes and afterwards the expectation value
|
||||
|
||||
:param thresh1: Binary 2D image in the form [[a_00, a_01, .., a_0Y], [a_10,.., a_1Y], .., [a_X0, .., a_XY]], with a_xy, x_dim=X, y_dim=Y
|
||||
:type thresh1: 2D numpy array
|
||||
:return: center coordinates of blob in form [x_center, y_center]
|
||||
:rtype: 1d numpy array (shape=(1,2))
|
||||
"""
|
||||
cen = np.zeros(2)
|
||||
(X,Y) = np.shape(thresh1)
|
||||
|
||||
thresh1 = thresh1 /np.sum(thresh1)
|
||||
|
||||
# marginal distributions
|
||||
dx = np.sum(thresh1, 1)
|
||||
dy = np.sum(thresh1, 0)
|
||||
|
||||
# expected values
|
||||
cen[0] = np.sum(dx * np.arange(X))
|
||||
cen[1] = np.sum(dy * np.arange(Y))
|
||||
return cen
|
||||
|
||||
def center_pix_conv(self, center_pix, x, y):
|
||||
"""Converts center in pixel to center in values of x and y
|
||||
|
||||
:param center_pix: pixel values of center
|
||||
:type center_pix: numpy array (shape=(1,2))
|
||||
:param x: x-axis
|
||||
:type x: 1d numpy array
|
||||
:param y: y-axis
|
||||
:type y: 1d numpy array
|
||||
:return: center coordinates in form [x_center, y_center] with respect to the axes
|
||||
:rtype: numpy array (shap=(1,2))
|
||||
"""
|
||||
center = np.empty(2)
|
||||
center[0] = x[round(center_pix[0])]
|
||||
center[1] = y[round(center_pix[1])]
|
||||
return center
|
||||
|
||||
def guess_BEC_width(self, thresh, center):
|
||||
""" returns width of blob in binarized image along both axis through the center
|
||||
|
||||
:param thresh: Binary 2D image in the form [[a_00, a_01, .., a_0Y], [a_10,.., a_1Y], .., [a_X0, .., a_XY]], with a_xy, x_dim=X, y_dim=Y
|
||||
:type thresh: 2d numpy array
|
||||
:param center: center of blob in image in form [x_center, y_center] in pixel
|
||||
:type center: 1d numpy array (shape=(1,2))
|
||||
:return: width of blob in image as [x_width, y_width]
|
||||
:rtype: 1d numpy array (shape=(1,2))
|
||||
"""
|
||||
shape = np.shape(thresh)
|
||||
|
||||
if len(shape) == 2:
|
||||
BEC_width_guess = np.array([np.sum(thresh[:, round(center[1])]), np.sum(thresh[round(center[0]), :]) ])
|
||||
for i in range(2):
|
||||
if BEC_width_guess[i] <= 0:
|
||||
BEC_width_guess[i] = 1
|
||||
|
||||
else:
|
||||
print("Shape of data is wrong, output is empty")
|
||||
|
||||
return BEC_width_guess
|
||||
|
||||
def cond_frac(self, results, X, Y):
|
||||
"""Returns condensate fraction of 2d fitting result
|
||||
|
||||
:param results: result of 2d bimodal fit
|
||||
:type results: result object (lmfit)
|
||||
:param X: X output of np.meshgrid(x_axis,y_axis) in form: [[x1, x2, .., xX], [x1, x2, .., xX] .. Y times ..]
|
||||
:type X: 2d numpy array
|
||||
:param Y: Y output of np.meshgrid(x_axis,y_axis) in form: [[y1, y1, .., y1 (X times)], [y2, y2, .., y2 (X times)], .. Y times ..]
|
||||
:type Y: 2d numpy array
|
||||
:return: condensate fraction
|
||||
:rtype: float between 0 and 1
|
||||
"""
|
||||
bval = results.best_values
|
||||
tf_fit = ThomasFermi_2d(X,Y,centerx=bval['x0_bec'], centery=bval['y0_bec'], amplitude=bval['amp_bec'], sigmax=bval['sigmax_bec'], sigmay=bval['sigmay_bec'])
|
||||
N_bec = np.sum(tf_fit)
|
||||
fit = density_profile_BEC_2d(X,Y, **bval)
|
||||
N_ges = np.sum(fit)
|
||||
return N_bec/N_ges
|
||||
|
||||
def return_atom_number(self, result, X, Y, is_print=True):
|
||||
"""Calculating (and printing if enabled) fitted atom number in BEC + thermal state, and condensate fraction
|
||||
|
||||
:param result: result of 2d bimodal fit
|
||||
:type result: result object (lmfit)
|
||||
:param X: X output of np.meshgrid(x_axis,y_axis) in form: [[x1, x2, .., xX], [x1, x2, .., xX] .. Y times ..]
|
||||
:type X: 2d numpy array
|
||||
:param Y: Y output of np.meshgrid(x_axis,y_axis) in form: [[y1, y1, .., y1 (X times)], [y2, y2, .., y2 (X times)], .. Y times ..]
|
||||
:type Y: 2d numpy array
|
||||
:param is_print: if true results are printed, defaults to True
|
||||
:type is_print: bool, optional
|
||||
:return: dictionary with total atom number N, BEC N_bec, thermal N_th and condensate fraction cond_f
|
||||
:rtype: dictionary
|
||||
"""
|
||||
bval = result.best_values
|
||||
tf_fit = ThomasFermi_2d(X,Y,centerx=bval['x0_bec'], centery=bval['y0_bec'], amplitude=bval['amp_bec'], sigmax=bval['sigmax_bec'], sigmay=bval['sigmay_bec'])
|
||||
N_bec = self.atom_n_conv * np.sum(tf_fit)
|
||||
|
||||
th_fit = polylog2_2d(X, Y, centerx=bval['x0_th'], centery=bval['y0_th'], amplitude=bval['amp_th'], sigmax=bval['sigma_th'], sigmay=bval['sigma_th'])
|
||||
N_th = self.atom_n_conv * np.sum(th_fit)
|
||||
|
||||
N = N_bec + N_th
|
||||
frac = N_bec/N
|
||||
# fit = density_profile_BEC_2d(X,Y, **bval)
|
||||
# N_ges = self.atom_n_conv * np.sum(fit)
|
||||
|
||||
if is_print:
|
||||
print()
|
||||
print('Atom numbers:')
|
||||
print(f' N_bec: {N_bec :.0f}')
|
||||
print(f' N_th: {N_th :.0f}')
|
||||
print(f' N_ges: {N:.0f}')
|
||||
print(f' Cond. frac: {frac *1e2:.2f} %')
|
||||
print('')
|
||||
|
||||
atom_n = {'N' : N, 'N_bec' : N_bec, 'N_th' : N_th, 'cond_f' : frac}
|
||||
return atom_n
|
||||
|
||||
|
||||
def return_temperature(self, result, tof, omg=None, is_print=True, eff_pix=2.472e-6):
|
||||
"""Returns temperature of thermal cloud
|
||||
|
||||
:param result: result of 2d bimodal fit
|
||||
:type result: result object (lmfit)
|
||||
:param tof: time of flight
|
||||
:type tof: float
|
||||
:param omg: geometric average of trapping frequencies, defaults to None
|
||||
:type omg: float, if NONE initial cloud size is neglected optional
|
||||
:param is_print: if True temperature is printed, defaults to True
|
||||
:type is_print: bool, optional
|
||||
:param eff_pix: effective pixel size of imaging setup, defaults to 2.472e-6
|
||||
:type eff_pix: float, optional
|
||||
:return: temperature of atom cloud
|
||||
:rtype: float
|
||||
"""
|
||||
R_th = result.best_values['sigma_th'] * eff_pix * np.sqrt(2)
|
||||
# print(R_th)
|
||||
if omg is None:
|
||||
T = R_th**2 * 164*const.u/const.k * (tof**2)**(-1)
|
||||
else:
|
||||
T = R_th**2 * 164*const.u/const.k * (1/omg**2 + tof**2)**(-1)
|
||||
|
||||
if is_print:
|
||||
print(f'Temperature: {T*1e9:.2f} nK')
|
||||
return T
|
||||
|
||||
def print_bval(self, res_s):
|
||||
"""nicely print best fitted values + init values + bounds
|
||||
|
||||
:param res_s: result of 2d bimodal fit
|
||||
:type res_s: result object (lmfit)
|
||||
"""
|
||||
keys = res_s.best_values.keys()
|
||||
bval = res_s.best_values
|
||||
init = res_s.init_params
|
||||
|
||||
for item in keys:
|
||||
print(f'{item}: {bval[item]:.3f}, (init = {init[item].value:.3f}), bounds = [{init[item].min:.2f} : {init[item].max :.2f}] ')
|
||||
print('')
|
||||
|
||||
|
||||
class NewFitModel(Model):
|
||||
|
@ -168,6 +168,8 @@ class ImageAnalyser():
|
||||
if span is None:
|
||||
span = self._span
|
||||
|
||||
if not x in
|
||||
|
||||
x_start = int(center[0] - span[0] / 2)
|
||||
x_end = int(center[0] + span[0] / 2)
|
||||
y_end = int(center[1] + span[1] / 2)
|
||||
@ -193,7 +195,14 @@ class ImageAnalyser():
|
||||
dataSet[key].attrs['x_span'] = span[0]
|
||||
dataSet[key].attrs['y_span'] = span[1]
|
||||
|
||||
return dataSet.isel(x=slice(x_start, x_end), y=slice(y_start, y_end))
|
||||
res = dataSet.isel(x=slice(x_start, x_end), y=slice(y_start, y_end))
|
||||
res = res.assign_coords(
|
||||
{
|
||||
'x': np.linspace(x_start, x_end - 1, span[0]),
|
||||
'y': np.linspace(y_start, y_end - 1, span[1]),
|
||||
}
|
||||
)
|
||||
return res
|
||||
|
||||
def get_OD(self, imageAtom, imageBackground, imageDrak):
|
||||
"""Calculate the OD image for absorption imaging.
|
||||
@ -208,12 +217,12 @@ class ImageAnalyser():
|
||||
:rtype: numpy array
|
||||
"""
|
||||
|
||||
denominator = np.atleast_1d(imageBackground - imageDrak)
|
||||
numerator = np.atleast_1d(imageAtom - imageDrak)
|
||||
numerator = np.atleast_1d(imageBackground - imageDrak)
|
||||
denominator = np.atleast_1d(imageAtom - imageDrak)
|
||||
|
||||
denominator[denominator == 0] = 1
|
||||
numerator[numerator == 0] = 1
|
||||
imageOD = np.abs(np.divide(numerator, denominator))
|
||||
denominator[denominator == 0] = 1
|
||||
imageOD = np.abs(np.divide(denominator, numerator))
|
||||
imageOD= -np.log(imageOD)
|
||||
|
||||
if len(imageOD) == 1:
|
||||
|
909
AtomLoss.ipynb
Normal file
909
AtomLoss.ipynb
Normal file
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@ -1,385 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Fitting with constraint\n",
|
||||
"result = []\n",
|
||||
"times = []\n",
|
||||
"x = np.linspace(0,shape[3],150)\n",
|
||||
"y = np.linspace(0,shape[2], 150)\n",
|
||||
"\n",
|
||||
"for i in range(0,shape[0]):\n",
|
||||
" temp_res_arr = []\n",
|
||||
" for j in range(0,shape[1]):\n",
|
||||
" data = cropOD[i,j]\n",
|
||||
" fitModel = lmfit.Model(density_profile_BEC_2d, independent_vars=['x','y'])\n",
|
||||
" #fitModel.set_param_hint('deltax', value=5)\n",
|
||||
"\n",
|
||||
" bval = result_x[i][j].best_values\n",
|
||||
" S = np.max(blurred[i,j])/(bval['amp_bec'] + bval['amp_th'])\n",
|
||||
"\n",
|
||||
" params = lmfit.Parameters()\n",
|
||||
" #print(bval['sigma_th'])\n",
|
||||
"\n",
|
||||
" params.add_many(\n",
|
||||
" ('amp_bec', S * bval['amp_bec'], True, 0, 1.3 * np.max(data)),\n",
|
||||
" ('amp_th',S * bval['amp_th'], True, 0, 1.3 * np.max(data)),\n",
|
||||
" ('x0_bec',center[i,j,0], True, 0, 150),\n",
|
||||
" ('y0_bec',center[i,j,1], True, 0, 150),\n",
|
||||
" ('x0_th',center[i,j,0], True, 0, 150),\n",
|
||||
" ('y0_th',center[i,j,1], True, 0, 150),\n",
|
||||
" ('sigmax_bec',bval['sigma_bec'], True, 0, 50),\n",
|
||||
" ('sigmay_bec',BEC_width_guess[i,j,1], True, 0, 50),\n",
|
||||
" ('D_sigX', 1.93*bval['sigma_th'] - 1.22*bval['sigma_bec'], True, 0.1, 50),\n",
|
||||
" ('D_sig_th', 0, True, -10, 10)\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" params.add('sigmax_th',bval['sigma_th'], min=0, expr=f'0.632*sigmax_bec + 0.518*D_sigX')\n",
|
||||
" params.add('sigmay_th',bval['sigma_th'], min=0, expr=f'sigmax_th + D_sig_th')\n",
|
||||
"\n",
|
||||
" X,Y = np.meshgrid(x, y)\n",
|
||||
" X_1d = X.flatten()\n",
|
||||
" Y_1d = Y.flatten()\n",
|
||||
"\n",
|
||||
" data1d = data.flatten()\n",
|
||||
" start = time.time()\n",
|
||||
" res = fitModel.fit(data1d, x=X_1d, y=Y_1d, params=params)\n",
|
||||
" stop = time.time()\n",
|
||||
" print(stop-start)\n",
|
||||
" times.append(stop-start)\n",
|
||||
" temp_res_arr.append(res)\n",
|
||||
" result.append(temp_res_arr)\n",
|
||||
"times = np.array(times)\n",
|
||||
"print(f\"fitting time = {np.mean(times)} +- {np.std(times, ddof=1)}\")\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# from opencv import moments\n",
|
||||
"shape = np.shape(cropOD)\n",
|
||||
"sigma = 0.4\n",
|
||||
"blurred = gaussian_filter(cropOD, sigma=sigma)\n",
|
||||
"\n",
|
||||
"thresh = np.zeros(shape)\n",
|
||||
"for i in range(0,shape[0]):\n",
|
||||
" for j in range(0, shape[1]):\n",
|
||||
" thresh[i,j] = np.where(blurred[i,j] < np.max(blurred[i,j])*0.5,0,1)\n",
|
||||
"\n",
|
||||
"center = calc_cen_bulk(thresh)\n",
|
||||
"\n",
|
||||
"BEC_width_guess = guess_BEC_width(thresh, center)\n",
|
||||
"\n",
|
||||
"X_guess_og = np.zeros((shape[0], shape[1], shape[3]))\n",
|
||||
"# Y_guess_og = np.zeros((shape[0], shape[1], shape[2]))\n",
|
||||
"\n",
|
||||
"for i in range(0, shape[0]):\n",
|
||||
" for j in range(0, shape[1]):\n",
|
||||
" X_guess_og[i,j] = np.sum(cropOD[i,j,round(center[i,j,1] - BEC_width_guess[i,j,1]/2) : round(center[i,j,1] + BEC_width_guess[i,j,1]/2) , :], 0) / len(cropOD[i,j,round(center[i,j,1] - BEC_width_guess[i,j,1]/2) : round(center[i,j,1] + BEC_width_guess[i,j,1]/2),0])\n",
|
||||
"\n",
|
||||
" # Y_guess_og[i,j] = np.sum(cropOD[i,j, :, round(center[i,j,0] - BEC_width_guess[i,j,0]/2) : round(center[i,j,0] + BEC_width_guess[i,j,0]/2)], 1) / len(cropOD[i,j,0,round(center[i,j,0] - BEC_width_guess[i,j,0]/2) : round(center[i,j,0] + BEC_width_guess[i,j,0]/2)])\n",
|
||||
"\n",
|
||||
"#[nr images x, nr images y, X / Y, center / sigma]\n",
|
||||
"x = np.linspace(0,149,150)\n",
|
||||
"y = np.linspace(0,149, 200)\n",
|
||||
"\n",
|
||||
"popt = np.zeros((shape[0], shape[1], 6))\n",
|
||||
"\n",
|
||||
"p0 = np.ones((shape[0], shape[1], 6))\n",
|
||||
"\n",
|
||||
"max = np.zeros((shape[0], shape[1]))\n",
|
||||
"\n",
|
||||
"for i in range(0, shape[0]):\n",
|
||||
" max[i] = np.ndarray.max(X_guess_og[i],axis=1)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"p0[:, :, 0] = center[:, :, 0] # center BEC\n",
|
||||
"p0[:, :, 1] = center[:, :, 0] # center th\n",
|
||||
"p0[:, :, 2] = 0.7 * max # amp BEC\n",
|
||||
"p0[:, :, 3] = 0.3 * max # amp th\n",
|
||||
"p0[:, :, 4] = BEC_width_guess[:, :, 0] # sigma BEC\n",
|
||||
"p0[:, :, 5] = BEC_width_guess[:, :, 0] * 3 # sigma th\n",
|
||||
"\n",
|
||||
"start = time.time()\n",
|
||||
"for i in range(0, shape[0]):\n",
|
||||
" for j in range(0, shape[1]):\n",
|
||||
" popt[i,j], pcov = curve_fit(density_1d, x, X_guess_og[i,j] , p0[i, j], nan_policy='omit')\n",
|
||||
"stop = time.time()\n",
|
||||
"\n",
|
||||
"print(f'fitting time: {(stop-start)*1e3} ms')\n",
|
||||
"\n",
|
||||
"fsize=(15,10)\n",
|
||||
"vmax = 1.5\n",
|
||||
"fig, ax = plt.subplots(shape[0],shape[1],figsize=fsize)\n",
|
||||
"for i in range(0, shape[0]):\n",
|
||||
" for j in range(0, shape[1]):\n",
|
||||
" lab = f\"A$_{{BEC}}$ = {popt[i,j,0]:.1f} \\n A$_{{th}}$ = {popt[i,j,1]:.1f} \"\n",
|
||||
" ax[i,j].plot(x, X_guess_og[i,j])\n",
|
||||
" ax[i,j].plot(x, density_1d(x, *popt[i,j]), label = lab, zorder=3)\n",
|
||||
" ax[i,j].plot(x, thermal(x, popt[i,j,1], popt[i,j, 3], popt[i,j, 5]))\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" #ax[i,j].legend(fontsize=10)\n",
|
||||
" ax[i,j].set_facecolor('#FFFFFF')\n",
|
||||
"plt.show()\n"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# from opencv import moments\n",
|
||||
"start = time.time()\n",
|
||||
"shape = np.shape(cropOD)\n",
|
||||
"sigma = 0.4\n",
|
||||
"blurred = gaussian_filter(cropOD, sigma=sigma)\n",
|
||||
"\n",
|
||||
"thresh = np.zeros(shape)\n",
|
||||
"for i in range(0,shape[0]):\n",
|
||||
" for j in range(0, shape[1]):\n",
|
||||
" thresh[i,j] = np.where(blurred[i,j] < np.max(blurred[i,j])*0.5,0,1)\n",
|
||||
"\n",
|
||||
"center = calc_cen_bulk(thresh)\n",
|
||||
"\n",
|
||||
"BEC_width_guess = guess_BEC_width(thresh, center)\n",
|
||||
"\n",
|
||||
"X_guess_og = np.zeros((shape[0], shape[1], shape[3]))\n",
|
||||
"# Y_guess_og = np.zeros((shape[0], shape[1], shape[2]))\n",
|
||||
"\n",
|
||||
"for i in range(0, shape[0]):\n",
|
||||
" for j in range(0, shape[1]):\n",
|
||||
" X_guess_og[i,j] = np.sum(cropOD[i,j,round(center[i,j,1] - BEC_width_guess[i,j,1]/2) : round(center[i,j,1] + BEC_width_guess[i,j,1]/2) , :], 0) / len(cropOD[i,j,round(center[i,j,1] - BEC_width_guess[i,j,1]/2) : round(center[i,j,1] + BEC_width_guess[i,j,1]/2),0])\n",
|
||||
"\n",
|
||||
" # Y_guess_og[i,j] = np.sum(cropOD[i,j, :, round(center[i,j,0] - BEC_width_guess[i,j,0]/2) : round(center[i,j,0] + BEC_width_guess[i,j,0]/2)], 1) / len(cropOD[i,j,0,round(center[i,j,0] - BEC_width_guess[i,j,0]/2) : round(center[i,j,0] + BEC_width_guess[i,j,0]/2)])\n",
|
||||
"\n",
|
||||
"#[nr images x, nr images y, X / Y, center / sigma]\n",
|
||||
"x = np.linspace(0,shape[3],150)\n",
|
||||
"y = np.linspace(0,shape[2], 150)\n",
|
||||
"\n",
|
||||
"popt = np.zeros((shape[0], shape[1], 6))\n",
|
||||
"\n",
|
||||
"p0 = np.ones((shape[0], shape[1], 6))\n",
|
||||
"\n",
|
||||
"max = np.zeros((shape[0], shape[1]))\n",
|
||||
"\n",
|
||||
"for i in range(0, shape[0]):\n",
|
||||
" max[i] = np.ndarray.max(X_guess_og[i],axis=1)\n",
|
||||
"\n",
|
||||
"# Fitting x without math constr\n",
|
||||
"fitmodel = lmfit.Model(density_1d,independent_vars=['x'])\n",
|
||||
"\n",
|
||||
"result_x = []\n",
|
||||
"\n",
|
||||
"for i in range(0, shape[0]):\n",
|
||||
" temp_res = []\n",
|
||||
" for j in range(0, shape[1]):\n",
|
||||
" t1 = time.time()\n",
|
||||
" params = lmfit.Parameters()\n",
|
||||
" params.add_many(\n",
|
||||
" ('x0_bec', center[i,j,0], True,0, 200),\n",
|
||||
" ('x0_th',center[i,j,0], True,0, 200),\n",
|
||||
" ('amp_bec', 0.7 * max[i,j], True, 0, 1.3 * np.max(X_guess_og[i,j])),\n",
|
||||
" ('amp_th', 0.3 * max[i,j], True, 0, 1.3 * np.max(X_guess_og[i,j])),\n",
|
||||
" ('deltax', 0, True, 0,50),\n",
|
||||
" ('sigma_bec',BEC_width_guess[i,j,0], True, 0, 50)\n",
|
||||
" )\n",
|
||||
" params.add('sigma_th', popt[i,j,5], min=0, expr=f'sigma_bec + deltax')\n",
|
||||
"\n",
|
||||
" t2 = time.time()\n",
|
||||
" res = fitmodel.fit(X_guess_og[i,j], x=x, params=params)\n",
|
||||
" t3 = time.time()\n",
|
||||
" temp_res.append(res)\n",
|
||||
" t4 = time.time()\n",
|
||||
" print(t2 - t1)\n",
|
||||
" print(t3 - t2)\n",
|
||||
" print(t4 - t3)\n",
|
||||
" print(\"\")\n",
|
||||
" result_x.append(temp_res)\n",
|
||||
"stop = time.time()\n",
|
||||
"\n",
|
||||
"print(f'total time: {(stop-start)*1e3} ms')3"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# from opencv import moments\n",
|
||||
"start = time.time()\n",
|
||||
"shape = np.shape(cropOD)\n",
|
||||
"sigma = 0.4\n",
|
||||
"blurred = gaussian_filter(cropOD, sigma=sigma)\n",
|
||||
"\n",
|
||||
"thresh = np.zeros(shape)\n",
|
||||
"for i in range(0,shape[0]):\n",
|
||||
" for j in range(0, shape[1]):\n",
|
||||
" thresh[i,j] = np.where(blurred[i,j] < np.max(blurred[i,j])*0.5,0,1)\n",
|
||||
"\n",
|
||||
"center = calc_cen_bulk(thresh)\n",
|
||||
"\n",
|
||||
"BEC_width_guess = guess_BEC_width(thresh, center)\n",
|
||||
"\n",
|
||||
"X_guess_og = np.zeros((shape[0], shape[1], shape[3]))\n",
|
||||
"# Y_guess_og = np.zeros((shape[0], shape[1], shape[2]))\n",
|
||||
"\n",
|
||||
"for i in range(0, shape[0]):\n",
|
||||
" for j in range(0, shape[1]):\n",
|
||||
" X_guess_og[i,j] = np.sum(cropOD[i,j,round(center[i,j,1] - BEC_width_guess[i,j,1]/2) : round(center[i,j,1] + BEC_width_guess[i,j,1]/2) , :], 0) / len(cropOD[i,j,round(center[i,j,1] - BEC_width_guess[i,j,1]/2) : round(center[i,j,1] + BEC_width_guess[i,j,1]/2),0])\n",
|
||||
"\n",
|
||||
" # Y_guess_og[i,j] = np.sum(cropOD[i,j, :, round(center[i,j,0] - BEC_width_guess[i,j,0]/2) : round(center[i,j,0] + BEC_width_guess[i,j,0]/2)], 1) / len(cropOD[i,j,0,round(center[i,j,0] - BEC_width_guess[i,j,0]/2) : round(center[i,j,0] + BEC_width_guess[i,j,0]/2)])\n",
|
||||
"\n",
|
||||
"#[nr images x, nr images y, X / Y, center / sigma]\n",
|
||||
"x = np.linspace(0,shape[3],150)\n",
|
||||
"y = np.linspace(0,shape[2], 150)\n",
|
||||
"\n",
|
||||
"popt = np.zeros((shape[0], shape[1], 6))\n",
|
||||
"\n",
|
||||
"p0 = np.ones((shape[0], shape[1], 6))\n",
|
||||
"\n",
|
||||
"max = np.zeros((shape[0], shape[1]))\n",
|
||||
"\n",
|
||||
"for i in range(0, shape[0]):\n",
|
||||
" max[i] = np.ndarray.max(X_guess_og[i],axis=1)\n",
|
||||
"\n",
|
||||
"# Fitting x without math constr\n",
|
||||
"fitmodel = lmfit.Model(density_1d,independent_vars=['x'])\n",
|
||||
"\n",
|
||||
"result_x = []\n",
|
||||
"\n",
|
||||
"for i in range(0, shape[0]):\n",
|
||||
" temp_res = []\n",
|
||||
" for j in range(0, shape[1]):\n",
|
||||
" t1 = time.time()\n",
|
||||
" params = lmfit.Parameters()\n",
|
||||
" params.add_many(\n",
|
||||
" ('x0_bec', center[i,j,0], True,0, 200),\n",
|
||||
" ('x0_th',center[i,j,0], True,0, 200),\n",
|
||||
" ('amp_bec', 0.7 * max[i,j], True, 0, 1.3 * np.max(X_guess_og[i,j])),\n",
|
||||
" ('amp_th', 0.3 * max[i,j], True, 0, 1.3 * np.max(X_guess_og[i,j])),\n",
|
||||
" ('sigma_bec',BEC_width_guess[i,j,0] / 1.22 , True, 0, 50),\n",
|
||||
" ('sigma_th', 3 * BEC_width_guess[i,j,0], True, 0, 50)\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" t2 = time.time()\n",
|
||||
" res = fitmodel.fit(X_guess_og[i,j], x=x, params=params)\n",
|
||||
" t3 = time.time()\n",
|
||||
" temp_res.append(res)\n",
|
||||
" t4 = time.time()\n",
|
||||
" # print(t2 - t1)\n",
|
||||
" # print(t3 - t2)\n",
|
||||
" # print(t4 - t3)\n",
|
||||
" # print(\"\")\n",
|
||||
" result_x.append(temp_res)\n",
|
||||
"stop = time.time()\n",
|
||||
"\n",
|
||||
"print(f'total time: {(stop-start)*1e3} ms')"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# get center of thresholded image\n",
|
||||
"\n",
|
||||
"def calc_thresh(data):\n",
|
||||
" shape = np.shape(data)\n",
|
||||
" thresh = np.zeros(shape)\n",
|
||||
" sigma = 0.4\n",
|
||||
"\n",
|
||||
" if len(shape) == 4:\n",
|
||||
" blurred = gaussian_filter(data, sigma=sigma)\n",
|
||||
" for i in range(0,shape[0]):\n",
|
||||
" for j in range(0, shape[1]):\n",
|
||||
" thresh[i,j] = np.where(blurred[i,j] < np.max(blurred[i,j])*0.5,0,1)\n",
|
||||
"\n",
|
||||
" elif len(shape) == 3:\n",
|
||||
" blurred = gaussian_filter(data, sigma=sigma)\n",
|
||||
" for i in range(0,shape[0]):\n",
|
||||
" thresh[i] = np.where(blurred[i] < np.max(blurred[i])*0.5,0,1)\n",
|
||||
"\n",
|
||||
" else:\n",
|
||||
" print(\"Shape of data is wrong, output is empty\")\n",
|
||||
"\n",
|
||||
" return thresh\n",
|
||||
"\n",
|
||||
"def calc_cen(thresh1):\n",
|
||||
" \"\"\"\n",
|
||||
" returns array: [Y_center,X_center]\n",
|
||||
" \"\"\"\n",
|
||||
" cen = np.zeros(2)\n",
|
||||
" (Y,X) = np.shape(thresh1)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" thresh1 = thresh1 /np.sum(thresh1)\n",
|
||||
"\n",
|
||||
" # marginal distributions\n",
|
||||
" dx = np.sum(thresh1, 0)\n",
|
||||
" dy = np.sum(thresh1, 1)\n",
|
||||
"\n",
|
||||
" # expected values\n",
|
||||
" cen[0] = np.sum(dx * np.arange(X))\n",
|
||||
" cen[1] = np.sum(dy * np.arange(Y))\n",
|
||||
" return cen\n",
|
||||
"\n",
|
||||
"def calc_cen_bulk(thresh):\n",
|
||||
" \"\"\"\n",
|
||||
" returns array in shape of input, containing array with [Y_center,X_center] for each image\n",
|
||||
" \"\"\"\n",
|
||||
" shape = np.shape(thresh)\n",
|
||||
" cen = np.zeros((shape[0], shape[1], 2))\n",
|
||||
" for i in range(0, shape[0]):\n",
|
||||
" for j in range(0, shape[1]):\n",
|
||||
" cen[i,j] = calc_cen(thresh[i,j])\n",
|
||||
" return cen\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def gaussian(x, x0, sigma, A):\n",
|
||||
" return A * np.exp(-0.5 * (x-x0)**2 / sigma**2)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 2
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython2",
|
||||
"version": "2.7.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0
|
||||
}
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
2094
fit_test_20230703.ipynb
Normal file
2094
fit_test_20230703.ipynb
Normal file
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue
Block a user