Fixed bugs + commented out
This commit is contained in:
parent
8a96cb841d
commit
a841f10379
@ -111,6 +111,19 @@ polylog_int = CubicSpline(x_int, poly_tab)
|
||||
|
||||
|
||||
def thermal(x, x0, amp, sigma):
|
||||
"""Calculating thermal density distribution in 1D (scaled such that if amp=1, return = 1)
|
||||
|
||||
:param x: axis
|
||||
:type x: float or 1d array
|
||||
:param x0: position of peak along axis
|
||||
:type x0: float
|
||||
:param amp: amplitude of function
|
||||
:type amp: float
|
||||
:param sigma: width of function
|
||||
:type sigma: float
|
||||
:return: calculated function value
|
||||
:rtype: float or 1D array
|
||||
"""
|
||||
res = np.exp(-0.5 * (x-x0)**2 / sigma**2)
|
||||
return amp/1.643 * polylog_int(res)
|
||||
|
||||
@ -363,6 +376,8 @@ class DensityProfileBEC2dModel(lmfit.Model):
|
||||
prefix='',
|
||||
nan_policy='raise',
|
||||
atom_n_conv=144,
|
||||
pre_check=False,
|
||||
post_check=False,
|
||||
is_debug=False,
|
||||
**kwargs
|
||||
):
|
||||
@ -370,6 +385,8 @@ class DensityProfileBEC2dModel(lmfit.Model):
|
||||
'independent_vars': independent_vars})
|
||||
|
||||
self.atom_n_conv = atom_n_conv
|
||||
self.pre_check = pre_check
|
||||
self.post_check = post_check
|
||||
self.is_debug=is_debug
|
||||
super().__init__(density_profile_BEC_2d, **kwargs)
|
||||
self._set_paramhints_prefix()
|
||||
@ -387,48 +404,71 @@ class DensityProfileBEC2dModel(lmfit.Model):
|
||||
self.set_param_hint('sigma_th', min=0)
|
||||
|
||||
|
||||
def guess(self, data, x, y, **kwargs):
|
||||
def guess(self, data, x, y, pre_check=False, post_check=False, **kwargs):
|
||||
"""Estimate and create initial model parameters for 2d bimodal fit, by doing a 1d bimodal fit along an integrated slice of the image
|
||||
|
||||
:param data: Flattened 2d array, in form [a_00, a_10, a_20, ..., a_01, a_02, .. ,a_XY] with a_xy, x_dim=X, y_dim=Y
|
||||
:type data: 1d numpy array
|
||||
:param x: flattened X output of np.meshgrid(x_axis,y_axis) in form: [x1, x2, .., xX, x1, x2, .., xX, .. Y times ..]
|
||||
:type x: 1d numpy array
|
||||
:param y: flattened Y output of np.meshgrid(x_axis,y_axis) in form: [y1, y1, .., y1 (X times), y2, y2, .., y2 (X times), .. Y times ..]
|
||||
:type y: 1d numpy array
|
||||
:param pre_check: if True the amplitude of the 1d fit is used to guess if the image is purely BEC or thermal and
|
||||
the corresponding amplitude of the 2d fit is set to zero and not varied to speed up the fitting, defaults to False
|
||||
:type pre_check: bool, optional
|
||||
:param post_check: if True, after doing a 2d bimodal fit the number of atoms surrounding the fitted BEC is counted and if the value is
|
||||
below a certain threshhold the fit is done again with the thermal amplitude set to zero, defaults to False
|
||||
:type post_check: bool, optional
|
||||
:return: initial parameters for 2d fit
|
||||
:rtype: params object (lmfit)
|
||||
"""
|
||||
Estimate and create initial model parameters for 2d fit
|
||||
:param data: Flattened 2d array, flattened from array with (x,y) -->
|
||||
:param x:
|
||||
:param y:
|
||||
:param kwargs:
|
||||
:return:
|
||||
"""
|
||||
#
|
||||
# global X_guess
|
||||
# global bval_1d
|
||||
self.pre_check = pre_check
|
||||
self.post_check = post_check
|
||||
|
||||
# reshaping the image to 2D in the form [[a_00, a_01, .., a_0Y], [a_10,.., a_1Y], .., [a_X0, .., a_XY]], with a_xy
|
||||
x_width = len(np.unique(x))
|
||||
y_width = len(np.unique(y))
|
||||
|
||||
data = np.reshape(data, (y_width, x_width))
|
||||
data = data.T
|
||||
|
||||
shape = np.shape(data)
|
||||
cut_width = np.max(shape)
|
||||
if self.is_debug:
|
||||
print(f'shape: {shape}')
|
||||
max_width = np.max(shape)
|
||||
|
||||
thresh = self.calc_thresh(data)
|
||||
# binarizing image to guess BEC width and calculate center
|
||||
thresh = self.calc_thresh(data,thresh_val=0.5)
|
||||
# calculating center of cloud by statistical distribution of binarized image
|
||||
center = self.calc_cen(thresh)
|
||||
|
||||
# guessing BEC width, or better of width of center blob if no BEC is present
|
||||
BEC_width_guess = self.guess_BEC_width(thresh, center)
|
||||
|
||||
# plot binarized image and center position for debugging
|
||||
if self.is_debug:
|
||||
plt.pcolormesh(thresh.T, cmap='jet')
|
||||
plt.plot(center[0], center[1], marker='x', markersize=25, color='green')
|
||||
plt.gca().set_aspect('equal')
|
||||
plt.title(f'Binarized image for guessing BEC width + center position (BEC_width: x={BEC_width_guess[0]:.0f}, y={BEC_width_guess[1]:.0f} pix)')
|
||||
plt.xlabel('x_axis')
|
||||
plt.ylabel('y_axis')
|
||||
plt.show()
|
||||
|
||||
# The 1d fit is done along the short axis of the BEC (decided via the BEC_width guess)
|
||||
if BEC_width_guess[0] < BEC_width_guess[1]:
|
||||
if self.is_debug:
|
||||
print(f'x smaller y')
|
||||
print(f'x smaller y, 1d fit along x')
|
||||
s_width_ind = 0
|
||||
# slice of the image along the short BEC axis with width of BEC width is taken
|
||||
X_guess = np.sum(data[:, round(center[1] - BEC_width_guess[1]/2) : round(center[1] + BEC_width_guess[1]/2)], 1) / len(data[0,round(center[1] - BEC_width_guess[1]/2) : round(center[1] + BEC_width_guess[1]/2)])
|
||||
else:
|
||||
if self.is_debug:
|
||||
print(f'y smaller x')
|
||||
print(f'y smaller x, 1d fit along y')
|
||||
s_width_ind = 1
|
||||
X_guess = np.sum(data[round(center[0] - BEC_width_guess[0]/2) : round(center[0] + BEC_width_guess[0]/2), :], 0) / len(data[0,round(center[0] - BEC_width_guess[0]/2) : round(center[0] + BEC_width_guess[0]/2)])
|
||||
|
||||
if self.is_debug:
|
||||
print(f'center = {center}')
|
||||
print(f'BEC widths: {BEC_width_guess}')
|
||||
plt.plot(X_guess)
|
||||
plt.show()
|
||||
|
||||
# Creating 1d fit init params + Performing fit
|
||||
x = np.linspace(0, len(X_guess), len(X_guess))
|
||||
|
||||
max_val = np.max(X_guess)
|
||||
@ -436,32 +476,52 @@ class DensityProfileBEC2dModel(lmfit.Model):
|
||||
fitmodel_1d = lmfit.Model(density_1d, independent_vars=['x'])
|
||||
params_1d = lmfit.Parameters()
|
||||
params_1d.add_many(
|
||||
('x0_bec', center[s_width_ind], True,0, 200),
|
||||
('x0_th',center[s_width_ind], True,0, 200),
|
||||
('amp_bec', 0.7 * max_val, True, 0, 1.3 * max_val),
|
||||
('amp_th', 0.3 * max_val, True, 0, 1.3 * max_val),
|
||||
('deltax', 3*BEC_width_guess[s_width_ind], True, 0,cut_width),
|
||||
('x0_bec', center[s_width_ind], True, center[s_width_ind]-10, center[s_width_ind]+10),
|
||||
('x0_th',center[s_width_ind], True, center[s_width_ind]-10, center[s_width_ind]+10),
|
||||
('amp_bec', 0.5 * max_val, True, 0, 1.3 * max_val),
|
||||
('amp_th', 0.5 * max_val, True, 0, 1.3 * max_val),
|
||||
('deltax', 3*BEC_width_guess[s_width_ind], True, 0, max_width),
|
||||
# ('sigma_bec',BEC_width_guess[i,j,0]/1.22, True, 0, 50)
|
||||
('sigma_bec',BEC_width_guess[s_width_ind]/1.22, True, 0, 50)
|
||||
('sigma_bec',BEC_width_guess[s_width_ind]/1.22, True, 0, BEC_width_guess[s_width_ind]*2)
|
||||
)
|
||||
params_1d.add('sigma_th', 3*BEC_width_guess[0], min=0, expr=f'0.632*sigma_bec + 0.518*deltax')
|
||||
|
||||
|
||||
res_1d = fitmodel_1d.fit(X_guess, x=x, params=params_1d)
|
||||
|
||||
if self.is_debug:
|
||||
params_1d.pretty_print()
|
||||
self.print_bval(res_1d)
|
||||
|
||||
|
||||
bval_1d = res_1d.best_values
|
||||
|
||||
if self.is_debug:
|
||||
print('')
|
||||
print('1d fit initialization')
|
||||
print(f'center = {center}')
|
||||
print(f'BEC widths: {BEC_width_guess}')
|
||||
print('')
|
||||
print('1d init fit values')
|
||||
params_1d.pretty_print()
|
||||
print('1d fitted values')
|
||||
self.print_bval(res_1d)
|
||||
|
||||
x = np.linspace(0, len(X_guess), len(X_guess))
|
||||
plt.plot(x, X_guess, label='1d int. data')
|
||||
plt.plot(x, density_1d(x,**bval_1d), label='bimodal fit')
|
||||
plt.plot(x, thermal(x,x0=bval_1d['x0_th'], amp=bval_1d['amp_th'], sigma=bval_1d['sigma_th']), label='thermal part')
|
||||
plt.legend()
|
||||
if s_width_ind==0:
|
||||
plt.title('1d fit of data along x-axis')
|
||||
plt.xlabel('x_axis (pix)')
|
||||
else:
|
||||
plt.title('1d fit of data along y-axis')
|
||||
plt.xlabel('y_axis (pix)')
|
||||
plt.show()
|
||||
|
||||
# scaling amplitudes of 1d fit with the maximum value of blurred 2d data
|
||||
amp_conv_1d_2d = np.max(gaussian_filter(data, sigma=1)) / (bval_1d['amp_bec'] + bval_1d['amp_th'])
|
||||
max_val = np.max(data)
|
||||
|
||||
params = self.make_params()
|
||||
|
||||
if bval_1d['amp_th']/bval_1d['amp_bec'] > 3:
|
||||
# if precheck enabled and amp_th is 7x higher than amp_bec (value might be changed), amplitude of BEC in 2d fit is set to zero
|
||||
if bval_1d['amp_th']/bval_1d['amp_bec'] > 7 and self.pre_check:
|
||||
print(f'Image seems to be purely thermal (guessed from 1d fit amplitude)')
|
||||
|
||||
params[f'{self.prefix}amp_bec'].set(value=0, vary=False)
|
||||
@ -472,9 +532,10 @@ class DensityProfileBEC2dModel(lmfit.Model):
|
||||
params[f'{self.prefix}y0_th'].set(value=center[1], min=center[1] -10, max=center[1] + 10, vary=True)
|
||||
params[f'{self.prefix}sigmax_bec'].set(value=1, vary=False)
|
||||
params[f'{self.prefix}sigmay_bec'].set(value=1, vary=False)
|
||||
params[f'{self.prefix}sigma_th'].set(value=bval_1d['sigma_th'], max=cut_width, vary=True)
|
||||
params[f'{self.prefix}sigma_th'].set(value=bval_1d['sigma_th'], max=max_width, vary=True)
|
||||
|
||||
elif bval_1d['amp_bec']/bval_1d['amp_th'] > 10:
|
||||
# if precheck enabled and amp_bec is 10x higher than amp_th (value might be changed), amplitude of thermal part in 2d fit is set to zero
|
||||
elif bval_1d['amp_bec']/bval_1d['amp_th'] > 10 and self.pre_check:
|
||||
print('Image seems to be pure BEC (guessed from 1d fit amplitude)')
|
||||
|
||||
params[f'{self.prefix}amp_bec'].set(value=amp_conv_1d_2d * bval_1d['amp_bec'], max=1.3 * max_val, vary=True)
|
||||
@ -494,6 +555,7 @@ class DensityProfileBEC2dModel(lmfit.Model):
|
||||
else:
|
||||
print('Error in small width BEC recogintion, s_width_ind should be 0 or 1')
|
||||
|
||||
# params for normal 2d bimodal fit are initialized
|
||||
else:
|
||||
params[f'{self.prefix}amp_bec'].set(value=amp_conv_1d_2d * bval_1d['amp_bec'], max=1.3 * max_val, vary=True)
|
||||
params[f'{self.prefix}amp_th'].set(value=amp_conv_1d_2d * bval_1d['amp_th'], max=1.3 * max_val, vary=True)
|
||||
@ -501,7 +563,7 @@ class DensityProfileBEC2dModel(lmfit.Model):
|
||||
params[f'{self.prefix}y0_bec'].set(value=center[1], min=center[1] -10, max=center[1] + 10, vary=True)
|
||||
params[f'{self.prefix}x0_th'].set(value=center[0], min=center[0] -10, max=center[0] + 10, vary=True)
|
||||
params[f'{self.prefix}y0_th'].set(value=center[1], min=center[1] -10, max=center[1] + 10, vary=True)
|
||||
params[f'{self.prefix}sigma_th'].set(value=bval_1d['sigma_th'], max=cut_width, vary=True)
|
||||
params[f'{self.prefix}sigma_th'].set(value=bval_1d['sigma_th'], max=max_width, vary=True)
|
||||
|
||||
if s_width_ind == 0:
|
||||
params[f'{self.prefix}sigmax_bec'].set(value=bval_1d['sigma_bec'], max= 2*BEC_width_guess[0], vary=True)
|
||||
@ -516,33 +578,43 @@ class DensityProfileBEC2dModel(lmfit.Model):
|
||||
print('')
|
||||
print('Init Params')
|
||||
params.pretty_print()
|
||||
print('')
|
||||
return lmfit.models.update_param_vals(params, self.prefix, **kwargs)
|
||||
|
||||
|
||||
def fit(self, data, **kwargs):
|
||||
|
||||
data_1d = data
|
||||
"""fitting function overwrites parent class fitting function of lmfit, in order to check (if post_check is enabled)
|
||||
if thermal fit completely lies in BEC fit by counting sourrounding number of atoms and comparing it to threshold value
|
||||
|
||||
res = super().fit(data_1d, **kwargs)
|
||||
:param data: Flattened 2d array, in form [a_00, a_10, a_20, ..., a_01, a_02, .. ,a_XY] with a_xy, x_dim=X, y_dim=Y
|
||||
:type data: 1d numpy array
|
||||
:return: result of 2d fit
|
||||
:rtype: result object (lmfit)
|
||||
"""
|
||||
|
||||
res = super().fit(data, **kwargs)
|
||||
|
||||
if self.is_debug:
|
||||
print('bval first fit')
|
||||
self.print_bval(res)
|
||||
|
||||
|
||||
if res.params['amp_bec'].vary and res.params['amp_th'].vary:
|
||||
bval = res.best_values
|
||||
bval = res.best_values
|
||||
# Do described post_check if enabled
|
||||
if res.params['amp_bec'].vary and res.params['amp_th'].vary and bval['amp_bec']>0.5*bval['amp_th'] and self.post_check:
|
||||
|
||||
# creating image by cutting out region around BEC and counting number of atoms
|
||||
sigma_cut = max(bval['sigmay_bec'], bval['sigmax_bec'])
|
||||
tf_fit = ThomasFermi_2d(kwargs['x'],kwargs['y'],centerx=bval['x0_bec'], centery=bval['y0_bec'], amplitude=bval['amp_bec'], sigmax=bval['sigmax_bec'], sigmay=bval['sigmay_bec'])
|
||||
tf_fit_2 = ThomasFermi_2d(kwargs['x'],kwargs['y'],centerx=bval['x0_bec'], centery=bval['y0_bec'], amplitude=bval['amp_bec'], sigmax=1.5 * sigma_cut, sigmay=1.5*sigma_cut)
|
||||
mask = np.where(tf_fit > 0, np.nan, data_1d)
|
||||
#mask[i,j] = gaussian_filter(mask[i,j], sigma = 0.4)
|
||||
mask = np.where(tf_fit > 0, np.nan, data)
|
||||
mask = np.where(tf_fit_2 > 0, mask, np.nan)
|
||||
|
||||
N_c = np.nansum(mask)
|
||||
# conversion N_count to Pixels
|
||||
N_a = self.atom_n_conv * N_c
|
||||
|
||||
#TODO change fixed threshhold to variable
|
||||
# If number of atoms around BEC is small the image is guessed to be purely BEC and another 2d fit is performed with setting the thermal amplitude to zero
|
||||
if N_a < 6615:
|
||||
print('No thermal part detected, performing fit without thermal function')
|
||||
params = res.params
|
||||
@ -551,7 +623,7 @@ class DensityProfileBEC2dModel(lmfit.Model):
|
||||
params[f'{self.prefix}y0_th'].set(value=1, vary=False)
|
||||
params[f'{self.prefix}sigma_th'].set(value=1, vary=False)
|
||||
|
||||
res = super().fit(data_1d, x=kwargs['x'], y=kwargs['y'], params=params)
|
||||
res = super().fit(data, x=kwargs['x'], y=kwargs['y'], params=params)
|
||||
|
||||
return res
|
||||
|
||||
@ -560,49 +632,38 @@ class DensityProfileBEC2dModel(lmfit.Model):
|
||||
def calc_thresh(self, data, thresh_val=0.3, sigma=0.4):
|
||||
"""Returns thresholded binary image after blurring to guess BEC size
|
||||
|
||||
:param data: 2d image or 1D or 2D array containing 2d images
|
||||
:type data: 2d, 3d or 4d numpy array
|
||||
:param data: 2d image
|
||||
:type data: 2d numpy array
|
||||
:param thresh_val: relative threshhold value for binarization with respect to maximum of blurred image
|
||||
:param sigma: sigma of gaussian blur filter (see scipy.ndimage.gaussian_filter
|
||||
:return: binary 2d image or 1D or 2D array containing 2d images
|
||||
:rtype: 2d, 3d or 4d numpy array
|
||||
:param sigma: sigma of gaussian blur filter (see scipy.ndimage.gaussian_filter)
|
||||
:return: binary 2d image
|
||||
:rtype: 2d numpy array
|
||||
"""
|
||||
shape = np.shape(data)
|
||||
thresh = np.zeros(shape)
|
||||
|
||||
blurred = gaussian_filter(data, sigma=sigma)
|
||||
|
||||
if len(shape) == 4:
|
||||
for i in range(0,shape[0]):
|
||||
for j in range(0, shape[1]):
|
||||
thresh[i,j] = np.where(blurred[i,j] < np.max(blurred[i,j])*thresh_val, 0, 1)
|
||||
|
||||
elif len(shape) == 3:
|
||||
for i in range(0,shape[0]):
|
||||
thresh[i] = np.where(blurred[i] < np.max(blurred[i])*thresh_val, 0, 1)
|
||||
|
||||
elif len(shape) == 2:
|
||||
thresh = np.where(blurred < np.max(blurred)*thresh_val, 0, 1)
|
||||
|
||||
|
||||
else:
|
||||
print("Shape of data is wrong, output is empty")
|
||||
thresh = np.where(blurred < np.max(blurred)*thresh_val, 0, 1)
|
||||
|
||||
return thresh
|
||||
|
||||
def calc_cen(self, thresh1):
|
||||
"""
|
||||
returns array: [X_center,Y_center]
|
||||
"""Calculating the center of a blob (atom cloud) in a binarized image by first calculating the probability distribution along both axes and afterwards the expectation value
|
||||
|
||||
:param thresh1: Binary 2D image in the form [[a_00, a_01, .., a_0Y], [a_10,.., a_1Y], .., [a_X0, .., a_XY]], with a_xy, x_dim=X, y_dim=Y
|
||||
:type thresh1: 2D numpy array
|
||||
:return: center coordinates of blob in form [x_center, y_center]
|
||||
:rtype: 1d numpy array (shape=(1,2))
|
||||
"""
|
||||
cen = np.zeros(2)
|
||||
(Y,X) = np.shape(thresh1)
|
||||
|
||||
(X,Y) = np.shape(thresh1)
|
||||
|
||||
thresh1 = thresh1 /np.sum(thresh1)
|
||||
|
||||
# marginal distributions
|
||||
dx = np.sum(thresh1, 0)
|
||||
dy = np.sum(thresh1, 1)
|
||||
dx = np.sum(thresh1, 1)
|
||||
dy = np.sum(thresh1, 0)
|
||||
|
||||
# expected values
|
||||
cen[0] = np.sum(dx * np.arange(X))
|
||||
@ -610,42 +671,61 @@ class DensityProfileBEC2dModel(lmfit.Model):
|
||||
return cen
|
||||
|
||||
def guess_BEC_width(self, thresh, center):
|
||||
"""
|
||||
returns width of thresholded area along both axis through the center with shape of thresh and [X_width, Y_width] for each image
|
||||
""" returns width of blob in binarized image along both axis through the center
|
||||
|
||||
:param thresh: Binary 2D image in the form [[a_00, a_01, .., a_0Y], [a_10,.., a_1Y], .., [a_X0, .., a_XY]], with a_xy, x_dim=X, y_dim=Y
|
||||
:type thresh: 2d numpy array
|
||||
:param center: center of blob in image in form [x_center, y_center]
|
||||
:type center: 1d numpy array (shape=(1,2))
|
||||
:return: width of blob in image as [x_width, y_width]
|
||||
:rtype: 1d numpy array (shape=(1,2))
|
||||
"""
|
||||
shape = np.shape(thresh)
|
||||
|
||||
if len(shape) == 2:
|
||||
BEC_width_guess = np.array([np.sum(thresh[round(center[1]), :]), np.sum(thresh[:, round(center[0])]) ])
|
||||
BEC_width_guess = np.array([np.sum(thresh[:, round(center[1])]), np.sum(thresh[round(center[0]), :]) ])
|
||||
for i in range(2):
|
||||
if BEC_width_guess[i] <= 0:
|
||||
BEC_width_guess[i] = 1
|
||||
|
||||
elif len(shape) == 3:
|
||||
BEC_width_guess = np.zeros((shape[0], 2))
|
||||
for i in range(0, shape[0]):
|
||||
BEC_width_guess[i, 0] = np.sum(thresh[i, round(center[i,j,1]), :])
|
||||
BEC_width_guess[i, 1] = np.sum(thresh[i, :, round(center[i,j,0])])
|
||||
|
||||
elif len(shape) == 4:
|
||||
BEC_width_guess = np.zeros((shape[0], shape[1], 2))
|
||||
for i in range(0, shape[0]):
|
||||
for j in range(0, shape[1]):
|
||||
BEC_width_guess[i, j, 0] = np.sum(thresh[i, j, round(center[i,j,1]), :])
|
||||
BEC_width_guess[i, j, 1] = np.sum(thresh[i, j, :, round(center[i,j,0])])
|
||||
else:
|
||||
print("Shape of data is wrong, output is empty")
|
||||
|
||||
return BEC_width_guess
|
||||
|
||||
def cond_frac(self, results):
|
||||
"""Returns condensate fraction"""
|
||||
def cond_frac(self, results, X, Y):
|
||||
"""Returns condensate fraction of 2d fitting result
|
||||
|
||||
:param results: result of 2d bimodal fit
|
||||
:type results: result object (lmfit)
|
||||
:param X: X output of np.meshgrid(x_axis,y_axis) in form: [[x1, x2, .., xX], [x1, x2, .., xX] .. Y times ..]
|
||||
:type X: 2d numpy array
|
||||
:param Y: Y output of np.meshgrid(x_axis,y_axis) in form: [[y1, y1, .., y1 (X times)], [y2, y2, .., y2 (X times)], .. Y times ..]
|
||||
:type Y: 2d numpy array
|
||||
:return: condensate fraction
|
||||
:rtype: float between 0 and 1
|
||||
"""
|
||||
bval = results.best_values
|
||||
tf_fit = ThomasFermi_2d(X, Y, centerx=bval['x0_bec'], centery=bval['y0_bec'], amplitude=bval['amp_bec'], sigmax=bval['sigmax_bec'], sigmay=bval['sigmay_bec'])
|
||||
tf_fit = ThomasFermi_2d(X,Y,centerx=bval['x0_bec'], centery=bval['y0_bec'], amplitude=bval['amp_bec'], sigmax=bval['sigmax_bec'], sigmay=bval['sigmay_bec'])
|
||||
N_bec = np.sum(tf_fit)
|
||||
fit = density_profile_BEC_2d(X, Y, **bval)
|
||||
fit = density_profile_BEC_2d(X,Y, **bval)
|
||||
N_ges = np.sum(fit)
|
||||
return N_bec/N_ges
|
||||
|
||||
def return_atom_number(self, result, X, Y, is_print=True):
|
||||
"""Printing fitted atom number in bec + thermal state"""
|
||||
"""Calculating (and printing if enabled) fitted atom number in BEC + thermal state, and condensate fraction
|
||||
|
||||
:param result: result of 2d bimodal fit
|
||||
:type result: result object (lmfit)
|
||||
:param X: X output of np.meshgrid(x_axis,y_axis) in form: [[x1, x2, .., xX], [x1, x2, .., xX] .. Y times ..]
|
||||
:type X: 2d numpy array
|
||||
:param Y: Y output of np.meshgrid(x_axis,y_axis) in form: [[y1, y1, .., y1 (X times)], [y2, y2, .., y2 (X times)], .. Y times ..]
|
||||
:type Y: 2d numpy array
|
||||
:param is_print: if true results are printed, defaults to True
|
||||
:type is_print: bool, optional
|
||||
:return: dictionary with total atom number N, BEC N_bec, thermal N_th and condensate fraction cond_f
|
||||
:rtype: dictionary
|
||||
"""
|
||||
bval = result.best_values
|
||||
tf_fit = ThomasFermi_2d(X,Y,centerx=bval['x0_bec'], centery=bval['y0_bec'], amplitude=bval['amp_bec'], sigmax=bval['sigmax_bec'], sigmay=bval['sigmay_bec'])
|
||||
N_bec = self.atom_n_conv * np.sum(tf_fit)
|
||||
@ -653,6 +733,8 @@ class DensityProfileBEC2dModel(lmfit.Model):
|
||||
th_fit = polylog2_2d(X, Y, centerx=bval['x0_th'], centery=bval['y0_th'], amplitude=bval['amp_th'], sigmax=bval['sigma_th'], sigmay=bval['sigma_th'])
|
||||
N_th = self.atom_n_conv * np.sum(th_fit)
|
||||
|
||||
N = N_bec + N_th
|
||||
frac = N_bec/N
|
||||
# fit = density_profile_BEC_2d(X,Y, **bval)
|
||||
# N_ges = self.atom_n_conv * np.sum(fit)
|
||||
|
||||
@ -661,22 +743,47 @@ class DensityProfileBEC2dModel(lmfit.Model):
|
||||
print('Atom numbers:')
|
||||
print(f' N_bec: {N_bec :.0f}')
|
||||
print(f' N_th: {N_th :.0f}')
|
||||
print(f' N_ges: {N_bec + N_th :.0f}')
|
||||
print(f' Cond. frac: {N_bec/(N_bec + N_th):.2f}')
|
||||
print(f' N_ges: {N:.0f}')
|
||||
print(f' Cond. frac: {frac *1e2:.2f} %')
|
||||
print('')
|
||||
|
||||
atom_n = {'N' : N, 'N_bec' : N_bec, 'N_th' : N_th, 'cond_f' : frac}
|
||||
return atom_n
|
||||
|
||||
def return_temperature(self, result, omg, tof, is_print=True, eff_pix=2.472e-6):
|
||||
"""Returns temperature of thermal cloud"""
|
||||
|
||||
def return_temperature(self, result, tof, omg=None, is_print=True, eff_pix=2.472e-6):
|
||||
"""Returns temperature of thermal cloud
|
||||
|
||||
:param result: result of 2d bimodal fit
|
||||
:type result: result object (lmfit)
|
||||
:param tof: time of flight
|
||||
:type tof: float
|
||||
:param omg: geometric average of trapping frequencies, defaults to None
|
||||
:type omg: float, if NONE initial cloud size is neglected optional
|
||||
:param is_print: if True temperature is printed, defaults to True
|
||||
:type is_print: bool, optional
|
||||
:param eff_pix: effective pixel size of imaging setup, defaults to 2.472e-6
|
||||
:type eff_pix: float, optional
|
||||
:return: temperature of atom cloud
|
||||
:rtype: float
|
||||
"""
|
||||
R_th = result.best_values['sigma_th'] * eff_pix * np.sqrt(2)
|
||||
print(R_th)
|
||||
T = R_th**2 * 164*const.u/const.k * (1/omg**2 + tof**2)**(-1)
|
||||
# print(R_th)
|
||||
if omg is None:
|
||||
T = R_th**2 * 164*const.u/const.k * (tof**2)**(-1)
|
||||
else:
|
||||
T = R_th**2 * 164*const.u/const.k * (1/omg**2 + tof**2)**(-1)
|
||||
|
||||
if is_print:
|
||||
print(f'Temperature: {T*1e9:.2f} nK')
|
||||
return T
|
||||
|
||||
def print_bval(self, res_s):
|
||||
"""nicely print best fitted values + init values + bounds """
|
||||
"""nicely print best fitted values + init values + bounds
|
||||
|
||||
:param res_s: result of 2d bimodal fit
|
||||
:type res_s: result object (lmfit)
|
||||
"""
|
||||
keys = res_s.best_values.keys()
|
||||
bval = res_s.best_values
|
||||
init = res_s.init_params
|
||||
|
Loading…
Reference in New Issue
Block a user