regular backup

This commit is contained in:
Jianshun Gao 2023-07-03 19:32:51 +02:00
parent 1e72312936
commit ae7fc0779f
2 changed files with 51 additions and 0 deletions

View File

@ -1,5 +1,6 @@
import glob import glob
from datetime import date from datetime import date
import copy
import numpy as np import numpy as np
from uncertainties import unumpy as unp from uncertainties import unumpy as unp
@ -8,14 +9,37 @@ import xarray as xr
def get_mask(dataArray): def get_mask(dataArray):
"""generate a bool mask array for given dataArray
:param dataArray: The given dataArray
:type dataArray: xarray DataArray
:return: the mask array
:rtype: numpy array of bool elements
"""
return np.ones(dataArray.shape, dtype=bool) return np.ones(dataArray.shape, dtype=bool)
def remove_bad_shots(dataArray, **kwargs): def remove_bad_shots(dataArray, **kwargs):
"""copy and remove bad shots from the dataArray
:param dataArray: The given dataArray
:type dataArray: xarray DataArray
:return: The dataArray after removement
:rtype: xarray DataArray
"""
dataArray = copy.deepcopy(dataArray)
dataArray.loc[dict(kwargs)] = np.nan dataArray.loc[dict(kwargs)] = np.nan
return dataArray
def auto_rechunk(dataSet): def auto_rechunk(dataSet):
"""rechunk the dataSet or dataArray using auto rechunk function
:param dataSet: The given dataArray or dataSet
:type dataSet: xarray DataArray or xarray DataSet
:return: The chuncked dataArray or dataSet
:rtype: xarray DataArray or xarray DataSet
"""
kwargs = { kwargs = {
key: "auto" key: "auto"
for key in dataSet.dims for key in dataSet.dims
@ -24,6 +48,15 @@ def auto_rechunk(dataSet):
def copy_chunk(dataSet, dataChunk): def copy_chunk(dataSet, dataChunk):
"""copy the chunk and apply to another dataArray or dataSet
:param dataSet: The dataArray or dataSet will be chunked
:type dataSet: xarray DataArray or xarray DataSet
:param dataChunk: The dataArray or dataSet giving the chunk
:type dataChunk: xarray DataArray or xarray DataSet
:return: The chuncked dataArray or dataSet
:rtype: xarray DataArray or xarray DataSet
"""
kwargs = { kwargs = {
key: dataChunk.chunksizes[key] key: dataChunk.chunksizes[key]
for key in dataChunk.chunksizes for key in dataChunk.chunksizes
@ -33,6 +66,17 @@ def copy_chunk(dataSet, dataChunk):
def get_h5_file_path(folderpath, maxFileNum=None, filename='*.h5',): def get_h5_file_path(folderpath, maxFileNum=None, filename='*.h5',):
"""_summary_
:param folderpath: _description_
:type folderpath: _type_
:param maxFileNum: _description_, defaults to None
:type maxFileNum: _type_, optional
:param filename: _description_, defaults to '*.h5'
:type filename: str, optional
:return: _description_
:rtype: _type_
"""
filepath = np.sort(glob.glob(folderpath + filename)) filepath = np.sort(glob.glob(folderpath + filename))
if maxFileNum is None: if maxFileNum is None:
return filepath return filepath

View File

@ -2033,6 +2033,13 @@
"dataSet_cropOD.to_numpy()" "dataSet_cropOD.to_numpy()"
] ]
}, },
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,