analyseScript/ToolFunction/ToolFunction.py
2023-07-03 19:32:51 +02:00

183 lines
4.3 KiB
Python

import glob
from datetime import date
import copy
import numpy as np
from uncertainties import unumpy as unp
import xarray as xr
def get_mask(dataArray):
"""generate a bool mask array for given dataArray
:param dataArray: The given dataArray
:type dataArray: xarray DataArray
:return: the mask array
:rtype: numpy array of bool elements
"""
return np.ones(dataArray.shape, dtype=bool)
def remove_bad_shots(dataArray, **kwargs):
"""copy and remove bad shots from the dataArray
:param dataArray: The given dataArray
:type dataArray: xarray DataArray
:return: The dataArray after removement
:rtype: xarray DataArray
"""
dataArray = copy.deepcopy(dataArray)
dataArray.loc[dict(kwargs)] = np.nan
return dataArray
def auto_rechunk(dataSet):
"""rechunk the dataSet or dataArray using auto rechunk function
:param dataSet: The given dataArray or dataSet
:type dataSet: xarray DataArray or xarray DataSet
:return: The chuncked dataArray or dataSet
:rtype: xarray DataArray or xarray DataSet
"""
kwargs = {
key: "auto"
for key in dataSet.dims
}
return dataSet.chunk(**kwargs)
def copy_chunk(dataSet, dataChunk):
"""copy the chunk and apply to another dataArray or dataSet
:param dataSet: The dataArray or dataSet will be chunked
:type dataSet: xarray DataArray or xarray DataSet
:param dataChunk: The dataArray or dataSet giving the chunk
:type dataChunk: xarray DataArray or xarray DataSet
:return: The chuncked dataArray or dataSet
:rtype: xarray DataArray or xarray DataSet
"""
kwargs = {
key: dataChunk.chunksizes[key]
for key in dataChunk.chunksizes
if key in dataSet.dims
}
return dataSet.chunk(**kwargs)
def get_h5_file_path(folderpath, maxFileNum=None, filename='*.h5',):
"""_summary_
:param folderpath: _description_
:type folderpath: _type_
:param maxFileNum: _description_, defaults to None
:type maxFileNum: _type_, optional
:param filename: _description_, defaults to '*.h5'
:type filename: str, optional
:return: _description_
:rtype: _type_
"""
filepath = np.sort(glob.glob(folderpath + filename))
if maxFileNum is None:
return filepath
else:
return filepath[:maxFileNum]
def get_date():
today = date.today()
return today.strftime("%Y/%m/%d")
def _combine_uncertainty(value, std):
return unp.uarray(value, std)
def combine_uncertainty(value, std, dask='parallelized', **kwargs):
kwargs.update(
{
"dask": dask,
}
)
return xr.apply_ufunc(_combine_uncertainty, value, std, **kwargs)
def _seperate_uncertainty_single(data):
return data.n, data.s
def _seperate_uncertainty(data):
func = np.vectorize(_seperate_uncertainty_single)
return func(data)
def seperate_uncertainty(data, dask='parallelized', **kwargs):
kwargs.update(
{
"dask": dask,
"output_core_dims": [[], []],
}
)
return xr.apply_ufunc(_seperate_uncertainty, data, **kwargs)
def get_scanAxis(dataSet):
res = dataSet.scanAxis
if len(res) == 0:
res = [None, None]
elif len(res) == 1:
res = [res[0], None]
elif len(res) == 2 and res[0] == 'runs':
res = [res[1], res[0]]
return res
def print_scanAxis(dataSet):
scanAxis = dataSet.scanAxis
scan = {}
for key in scanAxis:
scanValue = np.array(dataSet[key])
scanValue, indices = np.unique(scanValue, return_index=True)
scan.update(
{
key: scanValue[indices]
}
)
print("The detected scaning axes and values are: \n")
print(scan)
def calculate_mean(dataSet):
if 'runs' in dataSet.dims:
return dataSet.mean(dim='runs')
else:
return dataSet
def calculate_std(dataSet):
if 'runs' in dataSet.dims:
return dataSet.std(dim='runs')
else:
return None
def extract_temperature_from_fit():
pass
def extract_condensate_fraction_from_fit():
pass
def swap_xy(dataSet):
dataSet = dataSet.rename_dims(dict(x='__x'))
dataSet = dataSet.rename_dims(dict(y='x'))
dataSet = dataSet.rename_dims(dict(__x='y'))
return dataSet