debug and nwe functions
This commit is contained in:
parent
68d778de88
commit
2b2606afc4
@ -1,4 +1,5 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
|
from uncertainties import ufloat
|
||||||
|
|
||||||
import lmfit
|
import lmfit
|
||||||
from lmfit.models import (ConstantModel, ComplexConstantModel, LinearModel, QuadraticModel,
|
from lmfit.models import (ConstantModel, ComplexConstantModel, LinearModel, QuadraticModel,
|
||||||
@ -201,15 +202,21 @@ class TwoGaussian2dModel(Model):
|
|||||||
|
|
||||||
super().__init__(two_gaussian2d, **kwargs)
|
super().__init__(two_gaussian2d, **kwargs)
|
||||||
|
|
||||||
|
self._set_paramhints_prefix()
|
||||||
|
|
||||||
|
def _set_paramhints_prefix(self):
|
||||||
|
self.set_param_hint('delta', value=-1, max=0)
|
||||||
|
self.set_param_hint('A_sigmax', expr=f'{self.prefix}delta + {self.prefix}B_sigmax')
|
||||||
|
|
||||||
def guess(self, data, x, y, negative=False, **kwargs):
|
def guess(self, data, x, y, negative=False, **kwargs):
|
||||||
pars_guess = guess_from_peak2d(self.helperModel, data, x, y, negative)
|
pars_guess = guess_from_peak2d(self.helperModel, data, x, y, negative)
|
||||||
pars = self.make_params(A_amplitude=pars_guess['amplitude'], A_centerx=pars_guess['centerx'], A_centery=pars_guess['centery'],
|
pars = self.make_params(A_amplitude=pars_guess['amplitude'].value, A_centerx=pars_guess['centerx'].value, A_centery=pars_guess['centery'].value,
|
||||||
A_sigmax=pars_guess['sigmax'], A_sigmay=pars_guess['sigmay'],
|
A_sigmax=pars_guess['sigmax'].value, A_sigmay=pars_guess['sigmay'].value,
|
||||||
B_amplitude=pars_guess['amplitude'], B_centerx=pars_guess['centerx'], B_centery=pars_guess['centery'],
|
B_amplitude=pars_guess['amplitude'].value, B_centerx=pars_guess['centerx'].value, B_centery=pars_guess['centery'].value,
|
||||||
B_sigmax=pars_guess['sigmax'], B_sigmay=pars_guess['sigmay'])
|
B_sigmax=pars_guess['sigmax'].value, B_sigmay=pars_guess['sigmay'].value)
|
||||||
|
|
||||||
pars.add(f'{self.prefix}delta', value=-1, max=0, vary=True)
|
|
||||||
pars[f'{self.prefix}A_sigmax'].set(expr=f'delta + {self.prefix}B_sigmax')
|
pars[f'{self.prefix}A_sigmax'].set(expr=f'delta + {self.prefix}B_sigmax')
|
||||||
|
pars.add(f'{self.prefix}delta', value=-1, max=0, min=-np.inf, vary=True)
|
||||||
pars[f'{self.prefix}A_sigmay'].set(min=0.0)
|
pars[f'{self.prefix}A_sigmay'].set(min=0.0)
|
||||||
pars[f'{self.prefix}B_sigmax'].set(min=0.0)
|
pars[f'{self.prefix}B_sigmax'].set(min=0.0)
|
||||||
pars[f'{self.prefix}B_sigmay'].set(min=0.0)
|
pars[f'{self.prefix}B_sigmay'].set(min=0.0)
|
||||||
@ -264,6 +271,29 @@ class FitAnalyser():
|
|||||||
|
|
||||||
self.fitDim = fitDim
|
self.fitDim = fitDim
|
||||||
|
|
||||||
|
def print_params_set_templet(self, params=None):
|
||||||
|
|
||||||
|
if params is None:
|
||||||
|
params = self.fitModel.make_params()
|
||||||
|
|
||||||
|
for key in params:
|
||||||
|
res = "params.add("
|
||||||
|
res += "name=\"" + key + "\", "
|
||||||
|
if not params[key].expr is None:
|
||||||
|
res += "expr=" + params[key].expr +")"
|
||||||
|
else:
|
||||||
|
res += "value=" + f'{params[key].value:3g}' + ", "
|
||||||
|
if str(params[key].max)=="inf":
|
||||||
|
res += "max=np.inf, "
|
||||||
|
else:
|
||||||
|
res += "max=" + f'{params[key].max:3g}' + ", "
|
||||||
|
if str(params[key].min)=="-inf":
|
||||||
|
res += "min=-np.inf, "
|
||||||
|
else:
|
||||||
|
res += "min=" + f'{params[key].min:3g}' + ", "
|
||||||
|
res += "vary=" + str(params[key].vary) + ")"
|
||||||
|
print(res)
|
||||||
|
|
||||||
def _guess_1D(self, data, x, **kwargs):
|
def _guess_1D(self, data, x, **kwargs):
|
||||||
return self.fitModel.guess(data=data, x=x, **kwargs)
|
return self.fitModel.guess(data=data, x=x, **kwargs)
|
||||||
|
|
||||||
@ -374,6 +404,69 @@ class FitAnalyser():
|
|||||||
}
|
}
|
||||||
)
|
)
|
||||||
|
|
||||||
|
if isinstance(paramsArray, type(self.fitModel.make_params())):
|
||||||
|
|
||||||
|
if input_core_dims is None:
|
||||||
|
kwargs.update(
|
||||||
|
{
|
||||||
|
"input_core_dims": [['x']],
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
if x is None:
|
||||||
|
if 'x' in dataArray.dims:
|
||||||
|
x = dataArray['x'].to_numpy()
|
||||||
|
else:
|
||||||
|
if isinstance(x, str):
|
||||||
|
if input_core_dims is None:
|
||||||
|
kwargs.update(
|
||||||
|
{
|
||||||
|
"input_core_dims": [[x]],
|
||||||
|
}
|
||||||
|
)
|
||||||
|
x = dataArray[x].to_numpy()
|
||||||
|
|
||||||
|
if self.fitDim == 1:
|
||||||
|
return xr.apply_ufunc(self._fit_1D, dataArray, kwargs={'params':paramsArray,'x':x},
|
||||||
|
output_dtypes=[type(lmfit.model.ModelResult(self.fitModel, self.fitModel.make_params()))],
|
||||||
|
**kwargs)
|
||||||
|
|
||||||
|
if self.fitDim == 2:
|
||||||
|
|
||||||
|
if y is None:
|
||||||
|
if 'y' in dataArray.dims:
|
||||||
|
y = dataArray['y'].to_numpy()
|
||||||
|
if input_core_dims is None:
|
||||||
|
kwargs.update(
|
||||||
|
{
|
||||||
|
"input_core_dims": [['x', 'y']],
|
||||||
|
}
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
if isinstance(y, str):
|
||||||
|
kwargs["input_core_dims"][0] = np.append(kwargs["input_core_dims"][0], y)
|
||||||
|
y = dataArray[y].to_numpy()
|
||||||
|
elif input_core_dims is None:
|
||||||
|
kwargs.update(
|
||||||
|
{
|
||||||
|
"input_core_dims": [['x', 'y']],
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
_x, _y = np.meshgrid(x, y)
|
||||||
|
_x = _x.flatten()
|
||||||
|
_y = _y.flatten()
|
||||||
|
|
||||||
|
dataArray = dataArray.stack(_z=(kwargs["input_core_dims"][0][0], kwargs["input_core_dims"][0][1]))
|
||||||
|
|
||||||
|
kwargs["input_core_dims"][0] = ['_z']
|
||||||
|
|
||||||
|
return xr.apply_ufunc(self._fit_2D, dataArray, kwargs={'params':paramsArray,'x':_x, 'y':_y},
|
||||||
|
output_dtypes=[type(lmfit.model.ModelResult(self.fitModel, self.fitModel.make_params()))],
|
||||||
|
**kwargs)
|
||||||
|
|
||||||
|
else:
|
||||||
|
|
||||||
if input_core_dims is None:
|
if input_core_dims is None:
|
||||||
kwargs.update(
|
kwargs.update(
|
||||||
{
|
{
|
||||||
@ -394,48 +487,6 @@ class FitAnalyser():
|
|||||||
)
|
)
|
||||||
x = dataArray[x].to_numpy()
|
x = dataArray[x].to_numpy()
|
||||||
|
|
||||||
if isinstance(paramsArray, type(self.fitModel.make_params())):
|
|
||||||
|
|
||||||
if self.fitDim == 1:
|
|
||||||
return xr.apply_ufunc(self._fit_1D, dataArray, kwargs={'params':paramsArray,'x':x},
|
|
||||||
output_dtypes=[type(lmfit.model.ModelResult(self.fitModel, self.fitModel.make_params()))],
|
|
||||||
**kwargs)
|
|
||||||
|
|
||||||
if self.fitDim == 2:
|
|
||||||
|
|
||||||
if y is None:
|
|
||||||
if 'y' in dataArray.dims:
|
|
||||||
y = dataArray['y'].to_numpy()
|
|
||||||
if input_core_dims is None:
|
|
||||||
kwargs.update(
|
|
||||||
{
|
|
||||||
"input_core_dims": [['x', 'y'], []],
|
|
||||||
}
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
if isinstance(y, str):
|
|
||||||
kwargs["input_core_dims"][0] = np.append(kwargs["input_core_dims"][0], y)
|
|
||||||
y = dataArray[y].to_numpy()
|
|
||||||
elif input_core_dims is None:
|
|
||||||
kwargs.update(
|
|
||||||
{
|
|
||||||
"input_core_dims": [['x', 'y'], []],
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
_x, _y = np.meshgrid(x, y)
|
|
||||||
_x = _x.flatten()
|
|
||||||
_y = _y.flatten()
|
|
||||||
|
|
||||||
dataArray = dataArray.stack(_z=(kwargs["input_core_dims"][0][0], kwargs["input_core_dims"][0][1]))
|
|
||||||
|
|
||||||
kwargs["input_core_dims"][0] = ['_z']
|
|
||||||
|
|
||||||
return xr.apply_ufunc(self._fit_2D, dataArray, kwargs={'params':paramsArray,'x':_x, 'y':_y},
|
|
||||||
output_dtypes=[type(lmfit.model.ModelResult(self.fitModel, self.fitModel.make_params()))],
|
|
||||||
**kwargs)
|
|
||||||
|
|
||||||
else:
|
|
||||||
if self.fitDim == 1:
|
if self.fitDim == 1:
|
||||||
return xr.apply_ufunc(self._fit_1D, dataArray, paramsArray, kwargs={'x':x},
|
return xr.apply_ufunc(self._fit_1D, dataArray, paramsArray, kwargs={'x':x},
|
||||||
output_dtypes=[type(lmfit.model.ModelResult(self.fitModel, self.fitModel.make_params()))],
|
output_dtypes=[type(lmfit.model.ModelResult(self.fitModel, self.fitModel.make_params()))],
|
||||||
@ -537,4 +588,131 @@ class FitAnalyser():
|
|||||||
|
|
||||||
return xr.apply_ufunc(self._eval_2D, fitResultArray, kwargs={"x":_x, "y":_y, "shape":(len(x), len(y))}, **kwargs)
|
return xr.apply_ufunc(self._eval_2D, fitResultArray, kwargs={"x":_x, "y":_y, "shape":(len(x), len(y))}, **kwargs)
|
||||||
|
|
||||||
|
def _get_fit_value_single(self, fitResult, key):
|
||||||
|
return fitResult.params[key].value
|
||||||
|
|
||||||
|
def _get_fit_value(self, fitResult, params):
|
||||||
|
func = np.vectorize(self._get_fit_value_single)
|
||||||
|
res = tuple(
|
||||||
|
func(fitResult, key)
|
||||||
|
for key in params
|
||||||
|
)
|
||||||
|
|
||||||
|
return res
|
||||||
|
|
||||||
|
def get_fit_value(self, fitResult, dask='parallelized', **kwargs):
|
||||||
|
firstIndex = {
|
||||||
|
key: fitResult[key][0]
|
||||||
|
for key in fitResult.dims
|
||||||
|
}
|
||||||
|
firstFitResult = fitResult.sel(firstIndex).item()
|
||||||
|
|
||||||
|
params = list(firstFitResult.params.keys())
|
||||||
|
|
||||||
|
output_core_dims=[ [] for _ in range(len(params))]
|
||||||
|
|
||||||
|
kwargs.update(
|
||||||
|
{
|
||||||
|
"dask": dask,
|
||||||
|
"output_core_dims": output_core_dims,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
value = xr.apply_ufunc(self._get_fit_value, fitResult, kwargs=dict(params=params), **kwargs)
|
||||||
|
|
||||||
|
value = xr.Dataset(
|
||||||
|
data_vars={
|
||||||
|
params[i]: value[i]
|
||||||
|
for i in range(len(params))
|
||||||
|
},
|
||||||
|
attrs=fitResult.attrs
|
||||||
|
)
|
||||||
|
|
||||||
|
return value
|
||||||
|
|
||||||
|
def _get_fit_std_single(self, fitResult, key):
|
||||||
|
return fitResult.params[key].stderr
|
||||||
|
|
||||||
|
def _get_fit_std(self, fitResult, params):
|
||||||
|
func = np.vectorize(self._get_fit_std_single)
|
||||||
|
res = tuple(
|
||||||
|
func(fitResult, key)
|
||||||
|
for key in params
|
||||||
|
)
|
||||||
|
|
||||||
|
return res
|
||||||
|
|
||||||
|
def get_fit_std(self, fitResult, dask='parallelized', **kwargs):
|
||||||
|
firstIndex = {
|
||||||
|
key: fitResult[key][0]
|
||||||
|
for key in fitResult.dims
|
||||||
|
}
|
||||||
|
firstFitResult = fitResult.sel(firstIndex).item()
|
||||||
|
|
||||||
|
params = list(firstFitResult.params.keys())
|
||||||
|
|
||||||
|
output_core_dims=[ [] for _ in range(len(params))]
|
||||||
|
|
||||||
|
kwargs.update(
|
||||||
|
{
|
||||||
|
"dask": dask,
|
||||||
|
"output_core_dims": output_core_dims,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
value = xr.apply_ufunc(self._get_fit_std, fitResult, kwargs=dict(params=params), **kwargs)
|
||||||
|
|
||||||
|
value = xr.Dataset(
|
||||||
|
data_vars={
|
||||||
|
params[i]: value[i]
|
||||||
|
for i in range(len(params))
|
||||||
|
},
|
||||||
|
attrs=fitResult.attrs
|
||||||
|
)
|
||||||
|
|
||||||
|
return value
|
||||||
|
|
||||||
|
def _get_fit_full_result_single(self, fitResult, key):
|
||||||
|
return ufloat(fitResult.params[key].value, fitResult.params[key].stderr)
|
||||||
|
|
||||||
|
def _get_fit_full_result(self, fitResult, params):
|
||||||
|
func = np.vectorize(self._get_fit_full_result_single)
|
||||||
|
res = tuple(
|
||||||
|
func(fitResult, key)
|
||||||
|
for key in params
|
||||||
|
)
|
||||||
|
|
||||||
|
return res
|
||||||
|
|
||||||
|
def get_fit_full_result(self, fitResult, dask='parallelized', **kwargs):
|
||||||
|
firstIndex = {
|
||||||
|
key: fitResult[key][0]
|
||||||
|
for key in fitResult.dims
|
||||||
|
}
|
||||||
|
firstFitResult = fitResult.sel(firstIndex).item()
|
||||||
|
|
||||||
|
params = list(firstFitResult.params.keys())
|
||||||
|
|
||||||
|
output_core_dims=[ [] for _ in range(len(params))]
|
||||||
|
|
||||||
|
kwargs.update(
|
||||||
|
{
|
||||||
|
"dask": dask,
|
||||||
|
"output_core_dims": output_core_dims,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
value = xr.apply_ufunc(self._get_fit_full_result, fitResult, kwargs=dict(params=params), **kwargs)
|
||||||
|
|
||||||
|
value = xr.Dataset(
|
||||||
|
data_vars={
|
||||||
|
params[i]: value[i]
|
||||||
|
for i in range(len(params))
|
||||||
|
},
|
||||||
|
attrs=fitResult.attrs
|
||||||
|
)
|
||||||
|
|
||||||
|
return value
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -3,6 +3,8 @@ import numpy as np
|
|||||||
from collections import OrderedDict
|
from collections import OrderedDict
|
||||||
from functools import partial
|
from functools import partial
|
||||||
import copy
|
import copy
|
||||||
|
import glob
|
||||||
|
import os
|
||||||
|
|
||||||
|
|
||||||
def _read_globals_attrs(variable_attrs, context=None):
|
def _read_globals_attrs(variable_attrs, context=None):
|
||||||
@ -74,6 +76,9 @@ def _read_globals_attrs(variable_attrs, context=None):
|
|||||||
}
|
}
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# if result['scanAxis'] == []:
|
||||||
|
# result['scanAxis'] = ['runs',]
|
||||||
|
|
||||||
return result
|
return result
|
||||||
|
|
||||||
|
|
||||||
@ -83,16 +88,18 @@ def _read_shot_number_from_hdf5(x):
|
|||||||
return x.assign(shotNum=shotNum)
|
return x.assign(shotNum=shotNum)
|
||||||
|
|
||||||
|
|
||||||
def _assign_scan_axis_partial(x, datesetOfGlobal):
|
def _assign_scan_axis_partial(x, datesetOfGlobal, fullFilePath):
|
||||||
scanAxis = datesetOfGlobal.scanAxis
|
scanAxis = datesetOfGlobal.scanAxis
|
||||||
filePath = x.encoding["source"]
|
filePath = x.encoding["source"].replace("\\", "/")
|
||||||
shotNum = filePath.split("_")[-1].split("_")[-1].split(".")[0]
|
shotNum = np.where(fullFilePath==filePath)
|
||||||
|
shotNum = np.squeeze(shotNum)
|
||||||
|
# shotNum = filePath.split("_")[-1].split("_")[-1].split(".")[0]
|
||||||
x = x.assign(shotNum=shotNum)
|
x = x.assign(shotNum=shotNum)
|
||||||
x = x.expand_dims(list(scanAxis))
|
x = x.expand_dims(list(scanAxis))
|
||||||
|
|
||||||
return x.assign_coords(
|
return x.assign_coords(
|
||||||
{
|
{
|
||||||
key: np.atleast_1d(datesetOfGlobal.attrs[key][int(shotNum)])
|
key: np.atleast_1d(np.atleast_1d(datesetOfGlobal.attrs[key])[int(shotNum)])
|
||||||
for key in scanAxis
|
for key in scanAxis
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
@ -108,6 +115,21 @@ def update_hdf5_file():
|
|||||||
|
|
||||||
def read_hdf5_file(filePath, group=None, datesetOfGlobal=None, preprocess=None, join="outer", parallel=True, engine="h5netcdf", phony_dims="access", **kwargs):
|
def read_hdf5_file(filePath, group=None, datesetOfGlobal=None, preprocess=None, join="outer", parallel=True, engine="h5netcdf", phony_dims="access", **kwargs):
|
||||||
|
|
||||||
|
filePath = np.sort(np.atleast_1d(filePath))
|
||||||
|
|
||||||
|
filePathAbs = []
|
||||||
|
|
||||||
|
for i in range(len(filePath)):
|
||||||
|
filePathAbs.append(os.path.abspath(filePath[i]).replace("\\", "/"))
|
||||||
|
|
||||||
|
fullFilePath = []
|
||||||
|
for i in range(len(filePathAbs)):
|
||||||
|
fullFilePath.append(list(np.sort(glob.glob(filePathAbs[i]))))
|
||||||
|
fullFilePath = np.array(fullFilePath).flatten()
|
||||||
|
|
||||||
|
for i in range(len(fullFilePath)):
|
||||||
|
fullFilePath[i] = fullFilePath[i].replace("\\", "/")
|
||||||
|
|
||||||
kwargs.update(
|
kwargs.update(
|
||||||
{
|
{
|
||||||
'join': join,
|
'join': join,
|
||||||
@ -120,7 +142,7 @@ def read_hdf5_file(filePath, group=None, datesetOfGlobal=None, preprocess=None,
|
|||||||
|
|
||||||
if datesetOfGlobal is None:
|
if datesetOfGlobal is None:
|
||||||
datesetOfGlobal = xr.open_mfdataset(
|
datesetOfGlobal = xr.open_mfdataset(
|
||||||
filePath,
|
fullFilePath,
|
||||||
group="globals",
|
group="globals",
|
||||||
concat_dim="fileNum",
|
concat_dim="fileNum",
|
||||||
combine="nested",
|
combine="nested",
|
||||||
@ -130,14 +152,14 @@ def read_hdf5_file(filePath, group=None, datesetOfGlobal=None, preprocess=None,
|
|||||||
combine_attrs=_read_globals_attrs,
|
combine_attrs=_read_globals_attrs,
|
||||||
parallel=True, )
|
parallel=True, )
|
||||||
|
|
||||||
_assgin_scan_axis = partial(_assign_scan_axis_partial, datesetOfGlobal=datesetOfGlobal)
|
_assgin_scan_axis = partial(_assign_scan_axis_partial, datesetOfGlobal=datesetOfGlobal, fullFilePath=fullFilePath)
|
||||||
|
|
||||||
if preprocess is None:
|
if preprocess is None:
|
||||||
kwargs.update({'preprocess':_assgin_scan_axis})
|
kwargs.update({'preprocess':_assgin_scan_axis})
|
||||||
else:
|
else:
|
||||||
kwargs.update({'preprocess':preprocess})
|
kwargs.update({'preprocess':preprocess})
|
||||||
|
|
||||||
ds = xr.open_mfdataset(filePath, **kwargs)
|
ds = xr.open_mfdataset(fullFilePath, **kwargs)
|
||||||
|
|
||||||
newDimKey = np.append(['x', 'y', 'z'], [ chr(i) for i in range(97, 97+23)])
|
newDimKey = np.append(['x', 'y', 'z'], [ chr(i) for i in range(97, 97+23)])
|
||||||
|
|
||||||
|
@ -1,7 +1,11 @@
|
|||||||
import numpy as np
|
|
||||||
import glob
|
import glob
|
||||||
from datetime import date
|
from datetime import date
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from uncertainties import unumpy as unp
|
||||||
|
|
||||||
|
import xarray as xr
|
||||||
|
|
||||||
|
|
||||||
def get_mask(dataArray):
|
def get_mask(dataArray):
|
||||||
return np.ones(dataArray.shape, dtype=bool)
|
return np.ones(dataArray.shape, dtype=bool)
|
||||||
@ -41,8 +45,35 @@ def get_date():
|
|||||||
return today.strftime("%y/%m/%d")
|
return today.strftime("%y/%m/%d")
|
||||||
|
|
||||||
|
|
||||||
def resolve_fit_result(fitResult):
|
def _combine_uncertainty(value, std):
|
||||||
|
return unp.uarray(value, std)
|
||||||
|
|
||||||
|
|
||||||
|
def combine_uncertainty(value, std, dask='parallelized', **kwargs):
|
||||||
|
|
||||||
return
|
kwargs.update(
|
||||||
|
{
|
||||||
|
"dask": dask,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
return xr.apply_ufunc(_combine_uncertainty, value, std, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
def _seperate_uncertainty_single(data):
|
||||||
|
return data.n, data.s
|
||||||
|
|
||||||
|
def _seperate_uncertainty(data):
|
||||||
|
func = np.vectorize(_seperate_uncertainty_single)
|
||||||
|
return func(data)
|
||||||
|
|
||||||
|
def seperate_uncertainty(data, dask='parallelized', **kwargs):
|
||||||
|
|
||||||
|
kwargs.update(
|
||||||
|
{
|
||||||
|
"dask": dask,
|
||||||
|
"output_core_dims": [[], []],
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
return xr.apply_ufunc(_seperate_uncertainty, data, **kwargs)
|
1026
test.ipynb
1026
test.ipynb
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue
Block a user