analyseScript/ToolFunction/ToolFunction.py

79 lines
1.6 KiB
Python

import glob
from datetime import date
import numpy as np
from uncertainties import unumpy as unp
import xarray as xr
def get_mask(dataArray):
return np.ones(dataArray.shape, dtype=bool)
def remove_bad_shots(dataArray, **kwargs):
dataArray.loc[dict(kwargs)] = np.nan
def auto_rechunk(dataSet):
kwargs = {
key: "auto"
for key in dataSet.dims
}
return dataSet.chunk(**kwargs)
def copy_chunk(dataSet, dataChunk):
kwargs = {
key: dataChunk.chunksizes[key]
for key in dataChunk.chunksizes
if key in dataSet.dims
}
return dataSet.chunk(**kwargs)
def get_h5_file_path(folderpath, maxFileNum=None, filename='*.h5',):
filepath = np.sort(glob.glob(folderpath + filename))
if maxFileNum is None:
return filepath
else:
return filepath[:maxFileNum]
def get_date():
today = date.today()
return today.strftime("%y/%m/%d")
def _combine_uncertainty(value, std):
return unp.uarray(value, std)
def combine_uncertainty(value, std, dask='parallelized', **kwargs):
kwargs.update(
{
"dask": dask,
}
)
return xr.apply_ufunc(_combine_uncertainty, value, std, **kwargs)
def _seperate_uncertainty_single(data):
return data.n, data.s
def _seperate_uncertainty(data):
func = np.vectorize(_seperate_uncertainty_single)
return func(data)
def seperate_uncertainty(data, dask='parallelized', **kwargs):
kwargs.update(
{
"dask": dask,
"output_core_dims": [[], []],
}
)
return xr.apply_ufunc(_seperate_uncertainty, data, **kwargs)