tracking-parametrisation-tuner/parameterisations/parameterise_magnet_kink.py

164 lines
5.1 KiB
Python
Raw Normal View History

# flake8: noqa
2023-12-19 13:00:59 +01:00
from parameterisations.utils.parse_regression_coef_to_array import (
parse_regression_coef_to_array,
)
from parameterisations.utils.fit_linear_regression_model import (
fit_linear_regression_model,
)
import uproot
import argparse
from pathlib import Path
def parameterise_magnet_kink(
input_file: str = "data/param_data_selected.root",
tree_name: str = "Selected",
per_layer=False,
) -> Path:
"""Function that calculates parameters for estimating the magnet kink z position.
Args:
input_file (str, optional): Defaults to "data/param_data_selected.root".
tree_name (str, optional): Defaults to "Selected".
per_layer (bool, optional): If true also calculates parameters per SciFi layer. Defaults to False.
Returns:
Path: Path to cpp code file.
"""
input_tree = uproot.open({input_file: tree_name})
# this is an event list of dictionaries containing awkward arrays
array = input_tree.arrays()
array["dSlope_fringe"] = array["tx_ref"] - array["tx"]
# the magnet kink position is the point of intersection of the track tagents
array["z_mag_x_fringe"] = (
array["x"]
- array["x_ref"]
- array["tx"] * array["z"]
+ array["tx_ref"] * array["z_ref"]
) / array["dSlope_fringe"]
array["dSlope_xEndT"] = array["tx_l11"] - array["tx"]
array["dSlope_xEndT_abs"] = abs(array["dSlope_xEndT"])
array["x_EndT_abs"] = abs(
array["x_l11"] + array["tx_l11"] * (9410.0 - array["z_l11"]),
)
# the magnet kink position is the point of intersection of the track tagents
array["z_mag_xEndT"] = (
array["x"]
- array["x_l11"]
- array["tx"] * array["z"]
+ array["tx_l11"] * array["z_l11"]
) / array["dSlope_xEndT"]
if per_layer:
layered_features = [f"x_diff_straight_l{layer}" for layer in range(12)]
rows = []
for i, feat in enumerate(layered_features):
scale = 3000
if "dSlope" not in feat:
array[f"x_l{i}_rel"] = array[f"x_l{i}"] / scale
array[f"x_diff_straight_l{i}"] = (
array[f"x_l{i}"]
- array["x"]
- array["tx"] * (array[f"z_l{i}"] - array["z"])
)
model, poly_features = fit_linear_regression_model(
array,
target_feat="z_mag_x_fringe",
features=[
"tx",
"ty",
feat,
],
keep=[
"tx^2",
f"tx x_diff_straight_l{i}",
"ty^2",
f"x_diff_straight_l{i}^2",
],
degree=2,
fit_intercept=True,
)
rows.append(
"{"
+ str(model.intercept_)
+ "f,"
+ ",".join([str(coef) + "f" for coef in model.coef_ if coef != 0.0])
+ "}",
)
cpp_decl = parse_regression_coef_to_array(
model,
poly_features,
"zMagnetParamsLayers",
rows=rows,
)
# now fit model for the reference plane
model_ref, poly_features_ref = fit_linear_regression_model(
array,
target_feat="z_mag_x_fringe",
features=["tx", "ty", "dSlope_fringe"],
keep=["tx^2", "tx dSlope_fringe", "ty^2", "dSlope_fringe^2"],
degree=2,
fit_intercept=True,
)
cpp_ref = parse_regression_coef_to_array(
model_ref,
poly_features_ref,
"zMagnetParamsRef",
)
model_endt, poly_features_endt = fit_linear_regression_model(
array,
target_feat="z_mag_xEndT",
features=["tx", "dSlope_xEndT", "dSlope_xEndT_abs", "x_EndT_abs"],
keep=["tx^2", "dSlope_xEndT^2", "dSlope_xEndT_abs", "x_EndT_abs"],
degree=2,
fit_intercept=True,
)
cpp_ref += parse_regression_coef_to_array(
model_endt,
poly_features_endt,
"zMagnetParamsEndT",
)
outpath = Path("parameterisations/result/z_mag_kink_params.hpp")
outpath.parent.mkdir(parents=True, exist_ok=True)
with open(outpath, "w") as result:
result.writelines(cpp_decl + cpp_ref if per_layer else cpp_ref)
return outpath
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--input-file",
type=str,
help="Path to the input file",
required=False,
)
parser.add_argument(
"--tree-name",
type=str,
help="Path to the input file",
required=False,
)
args = parser.parse_args()
args_dict = {arg: val for arg, val in vars(args).items() if val is not None}
outfile = parameterise_magnet_kink(**args_dict)
try:
import subprocess
# run clang-format for nicer looking result
subprocess.run(
[
"clang-format",
"-i",
f"{outfile}",
],
check=True,
)
except:
pass