Go to file
cetin 7c2194df23 correct insanity cuts,
and GEC Filter to eff options files

trained network with correct parameterisation sample4

new effs with sample4 NN weights
2024-02-25 12:06:14 +01:00
arc6_data param and ghost data 2024-02-23 16:00:50 +01:00
data_matching correct insanity cuts, 2024-02-25 12:06:14 +01:00
env first commit 2023-12-19 13:00:59 +01:00
moore_options correct insanity cuts, 2024-02-25 12:06:14 +01:00
neural_net_training training of nn 2024-01-15 16:16:12 +01:00
nn_neural_net_training correct insanity cuts, 2024-02-25 12:06:14 +01:00
parameterisations correct insanity cuts, 2024-02-25 12:06:14 +01:00
scripts try filters 2024-02-23 11:39:21 +01:00
thesis correct insanity cuts, 2024-02-25 12:06:14 +01:00
.gitignore root files 2024-02-21 08:38:48 +01:00
.gitlab-ci.yml first commit 2023-12-19 13:00:59 +01:00
.pre-commit-config.yaml first commit 2023-12-19 13:00:59 +01:00
electron_main.py correct insanity cuts, 2024-02-25 12:06:14 +01:00
LICENSE first commit 2023-12-19 13:00:59 +01:00
main_tracking_losses.py first commit 2023-12-19 13:00:59 +01:00
main.py correct insanity cuts, 2024-02-25 12:06:14 +01:00
README.md readme 2023-12-19 13:05:56 +01:00
setup.sh first commit 2023-12-19 13:00:59 +01:00
tuner.code-workspace fixed calo filter 2024-02-22 15:39:31 +01:00

Parameterisation Tuner

This project provides utils for producing magic parameters used by the pattern recognition algorithms in the Rec project. Typical parameters are coefficients for extrapolation polynomials and weights for TMVA methods. This is based on this repo by André Günther.

Setup

There's a bash script for setting up the necessary (python) environment. Simply do:

chmod +x setup.sh
./setup.sh

This will install dependencies like ROOT and Jupyter. To enter the environment do:

source env/tuner_env/bin/activate
conda activate tuner