Connection works under ping_computer_from_arduino.ino

This commit is contained in:
Eilon Zohar 2025-07-17 09:17:22 +02:00
parent db993cae11
commit 863e486944
9 changed files with 857 additions and 38 deletions

View File

@ -0,0 +1,381 @@
/*
* Copyright (c) 2010 by Blake Foster <blfoster@vassar.edu>
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of either the GNU General Public License version 2
* or the GNU Lesser General Public License version 2.1, both as
* published by the Free Software Foundation.
*/
#include "ICMPPing.h"
#include <util.h>
#ifdef ICMPPING_INSERT_YIELDS
#define ICMPPING_DOYIELD() delay(2)
#else
#define ICMPPING_DOYIELD()
#endif
inline uint16_t _makeUint16(const uint8_t& highOrder, const uint8_t& lowOrder)
{
// make a 16-bit unsigned integer given the low order and high order bytes.
// lowOrder first because the Arduino is little endian.
uint8_t value [] = {lowOrder, highOrder};
return *(uint16_t *)&value;
}
uint16_t _checksum(const ICMPEcho& echo)
{
// calculate the checksum of an ICMPEcho with all fields but icmpHeader.checksum populated
unsigned long sum = 0;
// add the header, bytes reversed since we're using little-endian arithmetic.
sum += _makeUint16(echo.icmpHeader.type, echo.icmpHeader.code);
// add id and sequence
sum += echo.id + echo.seq;
// add time, one half at a time.
uint16_t const * time = (uint16_t const *)&echo.time;
sum += *time + *(time + 1);
// add the payload
for (uint8_t const * b = echo.payload; b < echo.payload + sizeof(echo.payload); b+=2)
{
sum += _makeUint16(*b, *(b + 1));
}
// ones complement of ones complement sum
sum = (sum >> 16) + (sum & 0xffff);
sum += (sum >> 16);
return ~sum;
}
ICMPEcho::ICMPEcho(uint8_t type, uint16_t _id, uint16_t _seq, uint8_t * _payload)
: seq(_seq), id(_id), time(millis())
{
memcpy(payload, _payload, REQ_DATASIZE);
icmpHeader.type = type;
icmpHeader.code = 0;
icmpHeader.checksum = _checksum(*this);
}
ICMPEcho::ICMPEcho()
: seq(0), id(0), time(0)
{
memset(payload, 0, sizeof(payload));
icmpHeader.code = 0;
icmpHeader.type = 0;
icmpHeader.checksum = 0;
}
void ICMPEcho::serialize(uint8_t * binData) const
{
*(binData++) = icmpHeader.type;
*(binData++) = icmpHeader.code;
*(uint16_t *)binData = htons(icmpHeader.checksum); binData += 2;
*(uint16_t *)binData = htons(id); binData += 2;
*(uint16_t *)binData = htons(seq); binData += 2;
*(icmp_time_t *) binData = htonl(time); binData += 4;
memcpy(binData, payload, sizeof(payload));
}
void ICMPEcho::deserialize(uint8_t const * binData)
{
icmpHeader.type = *(binData++);
icmpHeader.code = *(binData++);
icmpHeader.checksum = ntohs(*(uint16_t *)binData); binData += 2;
id = ntohs(*(uint16_t *)binData); binData += 2;
seq = ntohs(*(uint16_t *)binData); binData += 2;
if (icmpHeader.type != TIME_EXCEEDED)
{
time = ntohl(*(icmp_time_t *)binData); binData += 4;
}
memcpy(payload, binData, sizeof(payload));
}
uint16_t ICMPPing::ping_timeout = PING_TIMEOUT;
ICMPPing::ICMPPing(SOCKET socket, uint8_t id) :
#ifdef ICMPPING_ASYNCH_ENABLE
_curSeq(0), _numRetries(0), _asyncstart(0), _asyncstatus(BAD_RESPONSE),
#endif
_id(id), _nextSeq(0), _socket(socket), _attempt(0)
{
memset(_payload, 0x1A, REQ_DATASIZE);
}
void ICMPPing::setPayload(uint8_t * payload)
{
memcpy(_payload, payload, REQ_DATASIZE);
}
void ICMPPing::openSocket()
{
W5100.execCmdSn(_socket, Sock_CLOSE);
W5100.writeSnIR(_socket, 0xFF);
W5100.writeSnMR(_socket, SnMR::IPRAW);
W5100.writeSnPROTO(_socket, IPPROTO::ICMP);
W5100.writeSnPORT(_socket, 0);
W5100.execCmdSn(_socket, Sock_OPEN);
}
void ICMPPing::operator()(const IPAddress& addr, int nRetries, ICMPEchoReply& result)
{
openSocket();
ICMPEcho echoReq(ICMP_ECHOREQ, _id, _nextSeq++, _payload);
for (_attempt=0; _attempt<nRetries; ++_attempt)
{
ICMPPING_DOYIELD();
result.status = sendEchoRequest(addr, echoReq);
if (result.status == SUCCESS)
{
byte replyAddr [4];
ICMPPING_DOYIELD();
receiveEchoReply(echoReq, addr, result);
}
if (result.status == SUCCESS)
{
break;
}
}
W5100.execCmdSn(_socket, Sock_CLOSE);
W5100.writeSnIR(_socket, 0xFF);
}
ICMPEchoReply ICMPPing::operator()(const IPAddress& addr, int nRetries)
{
ICMPEchoReply reply;
operator()(addr, nRetries, reply);
return reply;
}
Status ICMPPing::sendEchoRequest(const IPAddress& addr, const ICMPEcho& echoReq)
{
// I wish there were a better way of doing this, but if we use the uint32_t
// cast operator, we're forced to (1) cast away the constness, and (2) deal
// with an endianness nightmare.
uint8_t addri [] = {addr[0], addr[1], addr[2], addr[3]};
W5100.writeSnDIPR(_socket, addri);
W5100.writeSnTTL(_socket, 128);
// The port isn't used, becuause ICMP is a network-layer protocol. So we
// write zero. This probably isn't actually necessary.
W5100.writeSnDPORT(_socket, 0);
uint8_t serialized [sizeof(ICMPEcho)];
echoReq.serialize(serialized);
W5100.send_data_processing(_socket, serialized, sizeof(ICMPEcho));
W5100.execCmdSn(_socket, Sock_SEND);
while ((W5100.readSnIR(_socket) & SnIR::SEND_OK) != SnIR::SEND_OK)
{
if (W5100.readSnIR(_socket) & SnIR::TIMEOUT)
{
W5100.writeSnIR(_socket, (SnIR::SEND_OK | SnIR::TIMEOUT));
return SEND_TIMEOUT;
}
ICMPPING_DOYIELD();
}
W5100.writeSnIR(_socket, SnIR::SEND_OK);
return SUCCESS;
}
void ICMPPing::receiveEchoReply(const ICMPEcho& echoReq, const IPAddress& addr, ICMPEchoReply& echoReply)
{
icmp_time_t start = millis();
while (millis() - start < ping_timeout)
{
if (W5100.getRXReceivedSize(_socket) < 1)
{
// take a break, maybe let platform do
// some background work (like on ESP8266)
ICMPPING_DOYIELD();
continue;
}
// ah! we did receive something... check it out.
uint8_t ipHeader[6];
uint8_t buffer = W5100.readSnRX_RD(_socket);
W5100.read_data(_socket, (uint16_t) buffer, ipHeader, sizeof(ipHeader));
buffer += sizeof(ipHeader);
for (int i = 0; i < 4; ++i)
echoReply.addr[i] = ipHeader[i];
uint8_t dataLen = ipHeader[4];
dataLen = (dataLen << 8) + ipHeader[5];
uint8_t serialized[sizeof(ICMPEcho)];
if (dataLen > sizeof(ICMPEcho))
dataLen = sizeof(ICMPEcho);
W5100.read_data(_socket, (uint16_t) buffer, serialized, dataLen);
echoReply.data.deserialize(serialized);
buffer += dataLen;
W5100.writeSnRX_RD(_socket, buffer);
W5100.execCmdSn(_socket, Sock_RECV);
echoReply.ttl = W5100.readSnTTL(_socket);
// Since there aren't any ports in ICMP, we need to manually inspect the response
// to see if it originated from the request we sent out.
switch (echoReply.data.icmpHeader.type) {
case ICMP_ECHOREP: {
if (echoReply.data.id == echoReq.id
&& echoReply.data.seq == echoReq.seq) {
echoReply.status = SUCCESS;
return;
}
break;
}
case TIME_EXCEEDED: {
uint8_t * sourceIpHeader = echoReply.data.payload;
unsigned int ipHeaderSize = (sourceIpHeader[0] & 0x0F) * 4u;
uint8_t * sourceIcmpHeader = echoReply.data.payload + ipHeaderSize;
// The destination ip address in the originating packet's IP header.
IPAddress sourceDestAddress(sourceIpHeader + ipHeaderSize - 4);
if (!(sourceDestAddress == addr))
continue;
uint16_t sourceId = ntohs(*(uint16_t * )(sourceIcmpHeader + 4));
uint16_t sourceSeq = ntohs(*(uint16_t * )(sourceIcmpHeader + 6));
if (sourceId == echoReq.id && sourceSeq == echoReq.seq) {
echoReply.status = BAD_RESPONSE;
return;
}
break;
}
}
}
echoReply.status = NO_RESPONSE;
}
#ifdef ICMPPING_ASYNCH_ENABLE
/*
* When ICMPPING_ASYNCH_ENABLE is defined, we have access to the
* asyncStart()/asyncComplete() methods from the API.
*/
bool ICMPPing::asyncSend(ICMPEchoReply& result)
{
ICMPEcho echoReq(ICMP_ECHOREQ, _id, _curSeq, _payload);
Status sendOpResult(NO_RESPONSE);
bool sendSuccess = false;
for (uint8_t i=_attempt; i<_numRetries; ++i)
{
_attempt++;
ICMPPING_DOYIELD();
sendOpResult = sendEchoRequest(_addr, echoReq);
if (sendOpResult == SUCCESS)
{
sendSuccess = true; // it worked
sendOpResult = ASYNC_SENT; // we're doing this async-style, force the status
_asyncstart = millis(); // not the start time, for timeouts
break; // break out of this loop, 'cause we're done.
}
}
_asyncstatus = sendOpResult; // keep track of this, in case the ICMPEchoReply isn't re-used
result.status = _asyncstatus; // set the result, in case the ICMPEchoReply is checked
return sendSuccess; // return success of send op
}
bool ICMPPing::asyncStart(const IPAddress& addr, int nRetries, ICMPEchoReply& result)
{
openSocket();
// stash our state, so we can access
// in asynchSend()/asyncComplete()
_numRetries = nRetries;
_attempt = 0;
_curSeq = _nextSeq++;
_addr = addr;
return asyncSend(result);
}
bool ICMPPing::asyncComplete(ICMPEchoReply& result)
{
if (_asyncstatus != ASYNC_SENT)
{
// we either:
// - didn't start an async request;
// - failed to send; or
// - are no longer waiting on this packet.
// either way, we're done
return true;
}
if (W5100.getRXReceivedSize(_socket))
{
// ooooh, we've got a pending reply
ICMPEcho echoReq(ICMP_ECHOREQ, _id, _curSeq, _payload);
receiveEchoReply(echoReq, _addr, result);
_asyncstatus = result.status; // make note of this status, whatever it is.
return true; // whatever the result of the receiveEchoReply(), the async op is done.
}
// nothing yet... check if we've timed out
if ( (millis() - _asyncstart) > ping_timeout)
{
// yep, we've timed out...
if (_attempt < _numRetries)
{
// still, this wasn't our last attempt, let's try again
if (asyncSend(result))
{
// another send has succeeded
// we'll wait for that now...
return false;
}
// this send has failed. too bad,
// we are done.
return true;
}
// we timed out and have no more attempts left...
// hello? is anybody out there?
// guess not:
result.status = NO_RESPONSE;
return true;
}
// have yet to time out, will wait some more:
return false; // results still not in
}
#endif /* ICMPPING_ASYNCH_ENABLE */

View File

@ -0,0 +1,298 @@
/*
* Copyright (c) 2010 by Blake Foster <blfoster@vassar.edu>
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of either the GNU General Public License version 2
* or the GNU Lesser General Public License version 2.1, both as
* published by the Free Software Foundation.
*/
#include <SPI.h>
#include <Ethernet.h>
#include <utility/w5100.h>
#define REQ_DATASIZE 64
#define ICMP_ECHOREPLY 0
#define ICMP_ECHOREQ 8
#define ICMP_ECHOREP 0
#define TIME_EXCEEDED 11
#define PING_TIMEOUT 1000
// ICMPPING_ASYNCH_ENABLE -- define this to enable asynch operations
// #define ICMPPING_ASYNCH_ENABLE
// ICMPPING_INSERT_YIELDS -- some platforms, such as ESP8266, like
// (read: need) to do background work so control must be yielded
// back to the main system periodically when you are doing something
// that takes a good while.
// Define (uncomment the following line) on these platforms, which
// will call a short delay() at critical junctures.
// #define ICMPPING_INSERT_YIELDS
typedef unsigned long icmp_time_t;
class ICMPHeader;
class ICMPPing;
typedef enum Status
{
/*
Indicates whether a ping succeeded or failed due to one of various error
conditions. These correspond to error conditions that occur in this
library, not anything defined in the ICMP protocol.
*/
SUCCESS = 0,
SEND_TIMEOUT = 1, // Timed out sending the request
NO_RESPONSE = 2, // Died waiting for a response
BAD_RESPONSE = 3, // we got back the wrong type
ASYNC_SENT = 4
} Status;
struct ICMPHeader
{
/*
Header for an ICMP packet. Does not include the IP header.
*/
uint8_t type;
uint8_t code;
uint16_t checksum;
};
struct ICMPEcho
{
/*
Contents of an ICMP echo packet, including the ICMP header. Does not
include the IP header.
*/
/*
This constructor sets all fields and calculates the checksum. It is used
to create ICMP packet data when we send a request.
@param type: ICMP_ECHOREQ or ICMP_ECHOREP.
@param _id: Some arbitrary id. Usually set once per process.
@param _seq: The sequence number. Usually started at zero and incremented
once per request.
@param payload: An arbitrary chunk of data that we expect to get back in
the response.
*/
ICMPEcho(uint8_t type, uint16_t _id, uint16_t _seq, uint8_t * _payload);
/*
This constructor leaves everything zero. This is used when we receive a
response, since we nuke whatever is here already when we copy the packet
data out of the W5100.
*/
ICMPEcho();
ICMPHeader icmpHeader;
uint16_t id;
uint16_t seq;
icmp_time_t time;
uint8_t payload [REQ_DATASIZE];
/*
Serialize the header as a byte array, in big endian format.
*/
void serialize(byte * binData) const;
/*
Serialize the header as a byte array, in big endian format.
*/
void deserialize(byte const * binData);
};
struct ICMPEchoReply
{
/*
Struct returned by ICMPPing().
@param data: The packet data, including the ICMP header.
@param ttl: Time to live
@param status: SUCCESS if the ping succeeded. One of various error codes
if it failed.
@param addr: The ip address that we received the response from. Something
is borked if this doesn't match the IP address we pinged.
*/
ICMPEcho data;
uint8_t ttl;
Status status;
IPAddress addr;
};
class ICMPPing
{
/*
Function-object for sending ICMP ping requests.
*/
public:
/*
Construct an ICMP ping object.
@param socket: The socket number in the W5100.
@param id: The id to put in the ping packets. Can be pretty much any
arbitrary number.
*/
ICMPPing(SOCKET s, uint8_t id);
/*
Control the ping timeout (ms). Defaults to PING_TIMEOUT (1000ms) but can
be set using setTimeout(MS).
@param timeout_ms: Timeout for ping replies, in milliseconds.
@note: this value is static -- i.e. system-wide for all ICMPPing objects.
*/
static void setTimeout(uint16_t setTo) { ping_timeout = setTo;}
/*
Fetch the current setting for ping timeouts (in ms).
@return: timeout for all ICMPPing requests, in milliseconds.
*/
static uint16_t timeout() { return ping_timeout;}
/*
Pings the given IP address.
@param addr: IP address to ping, as an array of four octets.
@param nRetries: Number of times to rety before giving up.
@return: An ICMPEchoReply containing the response. The status field in
the return value indicates whether the echo request succeeded or
failed. If the request failed, the status indicates the reason for
failure on the last retry.
*/
ICMPEchoReply operator()(const IPAddress&, int nRetries);
/*
This overloaded version of the () operator takes a (hopefully blank)
ICMPEchoReply as parameter instead of constructing one internally and
then copying it on return. This creates a very small improvement in
efficiency at the cost of making your code uglier.
@param addr: IP address to ping, as an array of four octets.
@param nRetries: Number of times to rety before giving up.
@param result: ICMPEchoReply that will hold the result.
*/
void operator()(const IPAddress& addr, int nRetries, ICMPEchoReply& result);
/*
Use setPayload to set custom data for all ICMP packets
by passing it an array of [REQ_DATASIZE]. E.g.
uint8_t myPayload[REQ_DATASIZE] = { ... whatever ...};
ICMPPing ping(pingSocket, (uint16_t)random(0, 255));
ping.setPayload(myPayload);
// ... as usual ...
@param payload: pointer to start of REQ_DATASIZE array of bytes to use as payload
*/
void setPayload(uint8_t * payload);
#ifdef ICMPPING_ASYNCH_ENABLE
/*
Asynchronous ping methods -- only enabled if ICMPPING_ASYNCH_ENABLE is defined, above.
These methods are used to start a ping request, go do something else, and
come back later to check if the results are in. A complete example is in the
examples directory but the gist of it is E.g.
// say we're in some function, to simplify things...
IPAddress pingAddr(74,125,26,147); // ip address to ping
ICMPPing ping(0, (uint16_t)random(0, 255));
ICMPEchoReply theResult;
if (! asyncStart(pingAddr, 3, theResult))
{
// well, this didn't start off on the right foot
Serial.print("Echo request send failed; ");
Serial.println((int)theResult.status);
//
return; // forget about this
}
// ok, ping has started...
while (! ping.asyncComplete(theResult)) {
// whatever needs handling while we wait on results
doSomeStuff();
doSomeOtherStuff();
delay(30);
}
// we get here means we either got a response, or timed out...
if (theResult.status == SUCCESS)
{
// yay... do something.
} else {
// boooo... do something else.
}
return;
*/
/*
asyncStart -- begins a new ping request, asynchronously. Parameters are the
same as for regular ping, but the method returns false on error.
@param addr: IP address to ping, as an array of four octets.
@param nRetries: Number of times to rety before giving up.
@param result: ICMPEchoReply that will hold a status == ASYNC_SENT on success.
@return: true on async request sent, false otherwise.
@author: Pat Deegan, http://psychogenic.com
*/
bool asyncStart(const IPAddress& addr, int nRetries, ICMPEchoReply& result);
/*
asyncComplete -- check if the asynchronous ping is done.
This can be either because of a successful outcome (reply received)
or because of an error/timeout.
@param result: ICMPEchoReply that will hold the result.
@return: true if the result ICMPEchoReply contains the status/other data,
false if we're still waiting for it to complete.
@author: Pat Deegan, http://psychogenic.com
*/
bool asyncComplete(ICMPEchoReply& result);
#endif
private:
// holds the timeout, in ms, for all objects of this class.
static uint16_t ping_timeout;
void openSocket();
Status sendEchoRequest(const IPAddress& addr, const ICMPEcho& echoReq);
void receiveEchoReply(const ICMPEcho& echoReq, const IPAddress& addr, ICMPEchoReply& echoReply);
#ifdef ICMPPING_ASYNCH_ENABLE
// extra internal state/methods used when asynchronous pings
// are enabled.
bool asyncSend(ICMPEchoReply& result);
uint8_t _curSeq;
uint8_t _numRetries;
icmp_time_t _asyncstart;
Status _asyncstatus;
IPAddress _addr;
#endif
uint8_t _id;
uint8_t _nextSeq;
SOCKET _socket;
uint8_t _attempt;
uint8_t _payload[REQ_DATASIZE];
};
#pragma pack(1)

View File

@ -0,0 +1,31 @@
#######################################
# Syntax Coloring Map For Ethernet
#######################################
#######################################
# Datatypes (KEYWORD1)
#######################################
ICMPPing KEYWORD1
ICMPHeader KEYWORD1
ICMPEcho KEYWORD1
ICMPEchoReply KEYWORD1
Status KEYWORD1
#######################################
# Methods and Functions (KEYWORD2)
#######################################
#######################################
# Constants (LITERAL1)
#######################################
SUCCESS LITERAL1
SEND_TIMEOUT LITERAL1
NO_RESPONSE LITERAL1
BAD_RESPONSE LITERAL1
REQ_DATASIZE LITERAL1
ICMP_ECHOREPLY LITERAL1
ICMP_ECHOREQ LITERAL1
ICMP_ECHOREP LITERAL1
PING_TIMEOUT LITERAL1

View File

@ -0,0 +1,14 @@
#ifndef UTIL_H
#define UTIL_H
#define htons(x) ( ((x)<< 8 & 0xFF00) | \
((x)>> 8 & 0x00FF) )
#define ntohs(x) htons(x)
#define htonl(x) ( ((x)<<24 & 0xFF000000UL) | \
((x)<< 8 & 0x00FF0000UL) | \
((x)>> 8 & 0x0000FF00UL) | \
((x)>>24 & 0x000000FFUL) )
#define ntohl(x) htonl(x)
#endif

View File

@ -15,10 +15,10 @@ void resetSensor() {
// //
// W5500 configuration // W5500 configuration
#include <SPI.h> #include <SPI.h>
#include <Ethernet3.h> #include <Ethernet.h>
// Configure MAC address and IP: // Configure MAC address and IP:
byte mac[] = { 0x61, 0x2C, 0xF2, 0x09, 0x73, 0xBE }; byte mac[] = { 0x97, 0x8A, 0xC5, 0x86, 0xA4, 0xEF };
char T[8]; char T[8];
char H[8]; char H[8];
char message[20]; char message[20];
@ -28,10 +28,17 @@ char message[20];
// Define CS and RST pins: // Define CS and RST pins:
#define W5500_CS_PIN 10 // 8 in E LEGO #define W5500_CS_PIN 10 // 8 in E LEGO
#define W5500_RST_PIN 9 //10 in E LEGO #define W5500_RST_PIN 9 //10 in E LEGO
IPAddress serverIP(10, 44, 1, 238); // Computer //IPAddress serverIP(10, 44, 1, 238); // Computer
IPAddress W5500_ip(10, 44, 1, 22); // Change the last digit //IPAddress W5500_ip(10, 44, 1, 22); // Change the last digit
IPAddress serverIP(10, 44, 1, 238);
IPAddress W5500_ip(10, 11, 1, 46);
IPAddress gateway(10, 11, 1, 1);
IPAddress DNS(147,142,19,254);
IPAddress subnet(255, 255, 255, 0);
// Don't change // Don't change
const int port = 5005; const int port = 5005;
@ -78,9 +85,9 @@ void setup() {
// Initialize Ethernet: // Initialize Ethernet:
Ethernet.init(W5500_CS_PIN); Ethernet.init(W5500_CS_PIN);
Ethernet.begin(mac, W5500_ip); Ethernet.begin(mac, W5500_ip, DNS, gateway, subnet);
delay(1500);
delay(1500);
Serial.print("W5500 IP: "); Serial.print("W5500 IP: ");
Serial.println(Ethernet.localIP()); Serial.println(Ethernet.localIP());
@ -93,12 +100,13 @@ void setup() {
Serial.println("Test Message sent"); Serial.println("Test Message sent");
} else { } else {
Serial.println("Connection failed"); Serial.println("Connection failed");
while(1);
} }
} }
void loop() { void loop() {
// put your main code here, to run repeatedly: // put your main code here, to run repeatedly:
// Measure temp. and humidity every 5 seconds // Measure temp. and humidity every 30 seconds
delay(15000); delay(15000);
float t = sht31.readTemperature(); float t = sht31.readTemperature();
float h = sht31.readHumidity(); float h = sht31.readHumidity();

View File

@ -20,5 +20,5 @@ with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
with conn: with conn:
data = conn.recv(1024) data = conn.recv(1024)
if data: if data:
print(f"Received from {addr} at {datetime.now()}: {data}") print(f"Received from {addr} at {datetime.now()}: {data.decode()}")

View File

@ -60,7 +60,7 @@ def write_data_to_influxDB(influx_client: InfluxDBClient, write_api: WriteApi, r
def setup_logger(logName): def setup_logger(logName):
# creat logger # creat logger
log_dir = "logs" log_dir = "../../Data/logs"
os.makedirs(log_dir, exist_ok=True) os.makedirs(log_dir, exist_ok=True)
# setup logging # setup logging
@ -117,7 +117,7 @@ if __name__ == "__main__":
if (message is not None and temp_or_hum == "T"): if (message is not None and temp_or_hum == "T"):
print (str (datetime.now () )[:19] + ": Temp is " + message) print (str (datetime.now () )[:19] + ": Temp is " + message)
T = float (message) T = float (message)
p1 = influxdb_client.Point ("FerDy").tag("Table", "Philipp's").field ("temp_on_desk", T) p1 = influxdb_client.Point ("FerDy").tag("Climate_control", "temperature").field ("temp_Eilons_desk", T)
temp_or_hum = "a" temp_or_hum = "a"
influx_client, write_api = write_data_to_influxDB (influx_client, write_api, p1) influx_client, write_api = write_data_to_influxDB (influx_client, write_api, p1)
time.sleep (update_interval/2) time.sleep (update_interval/2)
@ -125,7 +125,7 @@ if __name__ == "__main__":
elif (message is not None and temp_or_hum == "H"): elif (message is not None and temp_or_hum == "H"):
print (str (datetime.now () )[:19] + ": humidity is " + message) print (str (datetime.now () )[:19] + ": humidity is " + message)
H = float (message) H = float (message)
p1 = influxdb_client.Point ("FerDy").tag("Table", "Philipp's").field ("hum_on_desk", H) p1 = influxdb_client.Point ("FerDy").tag("Climate_control", "humidity").field ("hum_Eilons_desk", H)
temp_or_hum = "a" temp_or_hum = "a"
influx_client, write_api = write_data_to_influxDB (influx_client, write_api, p1) influx_client, write_api = write_data_to_influxDB (influx_client, write_api, p1)
time.sleep (update_interval/2) time.sleep (update_interval/2)

View File

@ -0,0 +1,111 @@
#include <SPI.h>
#include <Ethernet.h>
#include "Adafruit_SHT31.h"
Adafruit_SHT31 sht31 = Adafruit_SHT31();
#define SHT31_RST_PIN 16
void reset_SHT31() {
pinMode(SHT31_RST_PIN, OUTPUT);
digitalWrite(SHT31_RST_PIN, LOW);
delay(10);
digitalWrite(SHT31_RST_PIN, HIGH);
delay(10);
}
// MAC and IP configuration
byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
IPAddress ip(10, 11, 1, 46);
IPAddress gateway(10, 11, 1, 1);
IPAddress subnet(255, 255, 255, 0);
// Server to connect to
IPAddress server(10, 44, 1, 238);
const int serverPort = 5005; // Change to the port your server listens on
EthernetClient client;
char T[8];
char H[8];
char message[20];
void setup() {
// Initialize Ethernet
Serial.begin(9600);
while (!Serial); // Wait for Serial (only needed for native USB boards)
Ethernet.begin(mac, ip, gateway, gateway, subnet);
delay(1000); // Give Ethernet shield time to initialize
Serial.println("Connecting to server");
if (client.connect(server, serverPort)) {
client.write("Connection check");
Serial.println("Connection successful");
client.stop();
} else {
Serial.println("Connection failed");
}
// Initialize SHT31
if (!sht31.begin(0X44)) {
Serial.println("Couldn't find SHT31");
while (1) delay(100);
}
Serial.println("SHT31 Found");
}
void loop() {
// put your main code here, to run repeatedly:
// Measure temp. and humidity every 30 seconds
delay(15000);
float t = sht31.readTemperature();
float h = sht31.readHumidity();
// Report temperature to Eilon's computer
if (client.connect(server, serverPort)) {
client.write("Temp");
client.stop();
} else {
Serial.println("Connection failed");
}
if (client.connect(server, serverPort)) {
if (!isnan(t)) {
dtostrf(t, 6, 2, T);
snprintf(message, sizeof(message), "T %s", T);
client.write(T);
client.stop();
}
} else {
Serial.println("Connection failed");
}
// Report humidity to Eilon's computer
delay(15000);
if (client.connect(server, serverPort)) {
client.write("Humidity");
client.stop();
} else {
Serial.println("Connection failed");
}
if (client.connect(server, serverPort)) {
if (!isnan(h)) {
dtostrf(h, 6, 2, H);
snprintf(message, sizeof(message), "H %s", H);
client.write(H);
client.stop();
Serial.println("message sent");
}
} else {
Serial.println("Connection failed");
}
}

View File

@ -1,24 +0,0 @@
2025-07-01 12:04:21,940 - INFO - Logger set up complete
2025-07-01 12:04:21,940 - INFO - Reading the temperature on Phillip's desk
2025-07-01 12:05:54,673 - INFO - Logger set up complete
2025-07-01 12:05:54,673 - INFO - Reading the temperature on Phillip's desk
2025-07-01 12:09:29,668 - INFO - Logger set up complete
2025-07-01 12:09:29,668 - INFO - Reading the temperature on Phillip's desk
2025-07-01 16:42:01,247 - INFO - Logger set up complete
2025-07-01 16:42:01,247 - INFO - Reading the temperature on Phillip's desk
2025-07-01 16:45:29,238 - INFO - Logger set up complete
2025-07-01 16:45:29,239 - INFO - Reading the temperature on Phillip's desk
2025-07-01 16:46:28,621 - INFO - Logger set up complete
2025-07-01 16:46:28,621 - INFO - Reading the temperature on Phillip's desk
2025-07-01 16:49:50,243 - INFO - Logger set up complete
2025-07-01 16:49:50,243 - INFO - Reading the temperature on Phillip's desk
2025-07-01 16:50:28,107 - INFO - Logger set up complete
2025-07-01 16:50:28,108 - INFO - Reading the temperature on Phillip's desk
2025-07-01 16:50:53,880 - INFO - Logger set up complete
2025-07-01 16:50:53,881 - INFO - Reading the temperature on Phillip's desk
2025-07-01 17:20:51,260 - INFO - Logger set up complete
2025-07-01 17:20:51,260 - INFO - Reading the temperature on Phillip's desk
2025-07-01 17:21:00,372 - INFO - Logger set up complete
2025-07-01 17:21:00,372 - INFO - Reading the temperature on Phillip's desk
2025-07-01 17:21:36,585 - INFO - Logger set up complete
2025-07-01 17:21:36,585 - INFO - Reading the temperature on Phillip's desk