148 lines
16 KiB
Plaintext
148 lines
16 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 13,
|
|
"id": "672091c7",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# -*- coding: utf-8 -*-\n",
|
|
"\"\"\"\n",
|
|
"Created on Tue Aug 24 16:24:52 2021\n",
|
|
"\n",
|
|
"@author: Joschka\n",
|
|
"\"\"\"\n",
|
|
"\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"import numpy as np\n",
|
|
"import sys\n",
|
|
"sys.path.insert(0,'..\\src')\n",
|
|
"\n",
|
|
"import coil_class_jupyter as BC\n",
|
|
"\n",
|
|
"#from IPython import get_ipython\n",
|
|
"#get_ipython().run_line_magic('matplotlib', 'qt')\n",
|
|
"#get_ipython().run_line_magic('matplotlib', 'inline')\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 14,
|
|
"id": "d3a46f0f",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"HH = 1, Distance = 57.8 mm, z_min = 24.9 mm, z_max = 32.9 mm\n",
|
|
"Radius = 45.29999999999999 mm, Radius_inner = 41.29999999999999 mm, Radius_outer = 49.30 mm\n",
|
|
"layers = 1, windings = 1, wire_width = 8.0, wire_height = 8.0 mm \n",
|
|
"current density = 1.25 A/mm^2\n",
|
|
"Power = 0.47817553461759527 W\n",
|
|
"B_z(0) = 13.37 G\n",
|
|
"B_z_curvature(0) = 0.3775 G/cm^2\n",
|
|
"current density = 1.2499999999999998 A/mm^2\n",
|
|
"Power = 0.5193429647502357 W\n",
|
|
"width = 0.2mm, height = 320.0mm\n",
|
|
"B_z(0) = 1.81 G\n",
|
|
"B_z_curvature(0) = 0.1083 G/cm^2\n",
|
|
"current density = 1.25 A/mm^2\n",
|
|
"Power = 0.5188151771844329 W\n",
|
|
"width = 0.30000000000000004mm, height = 213.33333333333331mm\n",
|
|
"B_z(0) = 2.59 G\n",
|
|
"B_z_curvature(0) = 0.1629 G/cm^2\n",
|
|
"current density = 1.25 A/mm^2\n",
|
|
"Power = 0.5182873896186297 W\n",
|
|
"width = 0.4000000000000001mm, height = 159.99999999999997mm\n",
|
|
"B_z(0) = 3.32 G\n",
|
|
"B_z_curvature(0) = 0.2160 G/cm^2\n",
|
|
"current density = 1.25 A/mm^2\n",
|
|
"Power = 0.5177596020528267 W\n",
|
|
"width = 0.5000000000000001mm, height = 127.99999999999997mm\n",
|
|
"B_z(0) = 4.00 G\n",
|
|
"B_z_curvature(0) = 0.2669 G/cm^2\n",
|
|
"current density = 1.25 A/mm^2\n",
|
|
"Power = 0.5172318144870235 W\n",
|
|
"width = 0.6000000000000001mm, height = 106.66666666666666mm\n",
|
|
"B_z(0) = 4.63 G\n",
|
|
"B_z_curvature(0) = 0.3147 G/cm^2\n",
|
|
"current density = 1.25 A/mm^2\n",
|
|
"Power = 0.5167040269212204 W\n",
|
|
"width = 0.7000000000000002mm, height = 91.4285714285714mm\n",
|
|
"B_z(0) = 5.20 G\n",
|
|
"B_z_curvature(0) = 0.3588 G/cm^2\n",
|
|
"current density = 1.25 A/mm^2\n",
|
|
"Power = 0.5161762393554175 W\n",
|
|
"width = 0.8000000000000003mm, height = 79.99999999999997mm\n",
|
|
"B_z(0) = 5.74 G\n",
|
|
"B_z_curvature(0) = 0.3987 G/cm^2\n",
|
|
"current density = 1.25 A/mm^2\n",
|
|
"Power = 0.5156484517896143 W\n",
|
|
"width = 0.9000000000000001mm, height = 71.1111111111111mm\n",
|
|
"B_z(0) = 6.22 G\n",
|
|
"B_z_curvature(0) = 0.4344 G/cm^2\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAjh0lEQVR4nO3deXhV5bn+8e9DmAPIEEAIhBkBGUOEitahFYtDizgcEU79HWuL6EGlHlttbbV1tupRrFjkWGtPqwJVURQUFAdsaZUwDyEkDEIIU0DmKcl+fn9k49mGYFYgyR5yf66Ly+ysd2Xf2YabN2utvV5zd0REJHHVinYAERGpWip6EZEEp6IXEUlwKnoRkQSnohcRSXAqehGRBBeo6M1smJllm1mumd39DePOMrNiM7s64nMbzGy5mS0xs8zKCC0iIsHVLm+AmSUBE4GhQB6wwMxmuPuqMsY9Bswu48tc6O4FlZBXREQqKMiMfhCQ6+7r3P0oMAUYXsa4W4HXge2VmE9ERE5RuTN6IBXYFPE4DxgcOcDMUoERwHeAs0rt78AcM3PgeXefXN4TpqSkeMeOHQNEExERgIULFxa4e8uytgUpeivjc6Xvm/A0cJe7F5sdN/wcd883s1bA+2a22t3nHfckZmOAMQBpaWlkZupwvohIUGb2xYm2BTl0kwe0j3jcDsgvNSYDmGJmG4CrgefM7AoAd88P/3c7MJ2SQ0HHcffJ7p7h7hktW5b5j5KIiJyEIEW/AOhmZp3MrC4wEpgROcDdO7l7R3fvCLwG3OLub5pZspk1BjCzZOBiYEWlfgciIvKNyj104+5FZjaOkqtpkoAX3X2lmY0Nb5/0Dbu3BqaHD+fUBl5x9/dOPbaIiARlsXib4oyMDNcxehGR4MxsobtnlLVN74wVEUlwKnoRkQSnohcRSXAqehGRKHN3Ps3ZwaRP1lbJ1w/yhikREakC7s68nAImfLCGRRt3065ZA/5jSEfq10mq1OdR0YuIVDN355M1O5gwN4fFG3fT9rT6PHhFb67JaEe92pVb8qCiFxGpNu7Ox2t2MOGDHJZsKin4h0b05uqBVVPwx6joRUSqmLvzcfYOnp6bw9JNu0lt2oCHR/Th6oHtqFu76k+VquhFRKqIu/NR9nae/iCHZXl7SG3agEeu7MNV6dVT8Meo6EVEKpm78+Hq7UyYW1Lw7Zo14NEr+3BlNRf8MSp6EZFK4u58kLWdZ+bmsHzzHto3b8DvrurLiPRU6iRF72p2Fb2IyClyd95ftY0Jc3NYmb+XtOYN+d3VfRkxILoFf4yKXkTkJLk7c1ZtY8IHOazaspcOLRry+NV9uSJGCv4YFb2ISAWFQuGCn5tD1pa9dGzRkCeu6ccV/dtSO4YK/hgVvYhIQCUFv5WnP8hh9dZ9dEpJ5slr+jE8Rgv+GBW9iEg5QiHnvZVbeWZuScF3TknmqWv78f2+sV3wx6joRUROIBRy3l1RUvDZ20oK/ulr+/P9fm1JqmXRjheYil5EpJRQyJm1YgvPzM1hzbb9dG6ZzISR/bm8b3wV/DEqehGRsOKQM2t5ScHnbN9P11aN4rrgj1HRi0iNVxxyZoYLPnf7frq1asQz1w3gsj5t4rrgj1HRi0iNVRxy3lmWzzNzc1i74wDdWjXi2VEDuLR3G2olQMEfo6IXkRqnOOS8vTSfZz7MYd2OA3Rv3YiJo9K5pPfpCVXwxwQqejMbBkwAkoAX3P3RE4w7C/gXcK27v1aRfUVEqlpRcYi3l+Xz+w9zWbfjAD1Ob8xzo9MZdmZiFvwx5Ra9mSUBE4GhQB6wwMxmuPuqMsY9Bsyu6L4iIlWpqDjEjKUlBb++oKTg/zA6ne8leMEfE2RGPwjIdfd1AGY2BRgOlC7rW4HXgbNOYl8RkUpXVBzirSX5/P7DHDbsPEjPNk2Y9O/pXNyrZhT8MUGKPhXYFPE4DxgcOcDMUoERwHf4etGXu2/E1xgDjAFIS0sLEEtEpGzuznsrtvK72dmsLzhArzZNeP6HAxnas3WNKvhjghR9Wa+Kl3r8NHCXuxebfW14kH1LPuk+GZgMkJGRUeYYEZHyLN74JQ/NzCLziy/p3roRz/9wIBf3ak2pbqpRghR9HtA+4nE7IL/UmAxgSviFTAEuNbOigPuKiJyyTbsO8rvZ2by9NJ+URvV45Mo+XDOwXVzci6aqBSn6BUA3M+sEbAZGAqMiB7h7p2Mfm9lLwDvu/qaZ1S5vXxGRU7HnUCHPfZTLn/6xgVq14NbvdOWm87vQqJ6uHj+m3FfC3YvMbBwlV9MkAS+6+0ozGxvePqmi+1ZOdBGpyQqLQ7z8ry+YMDeH3YcKuXJAO+78XnfanNYg2tFijrnH3uHwjIwMz8zMjHYMEYlBx5bte/Td1awrOMCQLi345aU96Z16WrSjRZWZLXT3jLK26XcbEYkby/J289DMLD5bv4suLZP54//L4Ds9WtXoE61BqOhFJObl7z7E47Ozmb54My2S6/LAFb0ZeVb7mFqXNZap6EUkZu07XMgfPl7LH/++HgduuaALYy/oQpP6daIdLa6o6EUk5hQVh3h1wSaefn8NOw8c5Yr+bfnZsB6kNtWJ1pOhoheRmOHufJS9nYdnrSZ3+34GdWrOny7rSd92TaMdLa6p6EUkJqzM38NDM7OYv3YnnVKS9Y7WSqSiF5Go2rrnME/Myeb1RXk0bVCH33y/F6O/1UEnWiuRil5EouLAkSKe/2Qtkz9dRygEY77dmVsu7MppDXSitbKp6EWkWhWHnGmZm3hyzhoK9h/h+/3a8vPvnUH75g2jHS1hqehFpNp8smYHD8/MInvbPgZ2aMb/XD+QAWnNoh0r4anoRaTKrd66l4dmZvFpTgEdWjTkD6PTGdb7dJ1orSYqehGpMtv3Hua/31/DtMxNNK5fh19d1pPrz+5I3do60VqdVPQiUukOHi3if+at5/l5ayksDnHDOZ249TtdadqwbrSj1UgqehGpNMUh5/VFeTw5J5tte49waZ/TuWtYDzq0SI52tBpNRS8ileLvOQU8NCuLrC176d++KRNHpZPRsXm0YwkqehE5RTnb9vHwrCw+yt5Bu2YN+P11A7i8bxudaI0hKnoROSk79h3hqQ/WMOXzjSTXq80vL+3B9Wd3pH6dpGhHk1JU9CJSIYcLi/nj39fz3Ee5HCkKcf3ZHbntu91onqwTrbFKRS8igbg7by/bwiOzstiy5zAX92rN3Zf0oHPLRtGOJuVQ0YtIudYXHODXb67g77kF9E5twlPX9udbnVtEO5YEpKIXkRM6XFjMcx+vZdLHa6lXuxb3Dz+T0YM7kFRLJ1rjSaCiN7NhwAQgCXjB3R8ttX048AAQAoqA8e7+9/C2DcA+oBgoOtEq5SISW+at2cG9b61gw86DDO/flnsu60mrxvWjHUtOQrlFb2ZJwERgKJAHLDCzGe6+KmLYXGCGu7uZ9QWmAT0itl/o7gWVmFtEqsi2vYe5/51VzFy2hc4pyfz1xsGc2y0l2rHkFASZ0Q8Cct19HYCZTQGGA18VvbvvjxifDHhlhhSRqlcccv73nxt4cs4ajhaHuGNod246vzP1autyyXgXpOhTgU0Rj/OAwaUHmdkI4BGgFXBZxCYH5piZA8+7++SynsTMxgBjANLS0gKFF5HKsXTTbu55czkrNu/lvO4tuf8HZ9IxRbctSBRBir6ssy7HzdjdfTow3czOo+R4/UXhTee4e76ZtQLeN7PV7j6vjP0nA5MBMjIy9BuBSDXYc6iQx2ev5uXPNtKyUT0mjkrn0j66fXCiCVL0eUD7iMftgPwTDXb3eWbWxcxS3L3A3fPDn99uZtMpORR0XNGLSPVxd95aks+DM7PYdeAI/zGkI3cM7U7j+lrGLxEFKfoFQDcz6wRsBkYCoyIHmFlXYG34ZGw6UBfYaWbJQC133xf++GLg/kr9DkSkQnK37+fet1Ywf+1O+rVvyks3nEXv1NOiHUuqULlF7+5FZjYOmE3J5ZUvuvtKMxsb3j4JuAq43swKgUPAteHSb03J4Zxjz/WKu79XRd+LiHyDw4XFTPwol0mfrKVBnSQevKI31w1K0zXxNYC5x97h8IyMDM/MzIx2DJGE8VH2du57ayUbdx1kxIBUfnlpT1o2rhftWFKJzGzhid6npHfGiiSwrXsOc/87K5m1fCudWybzyk8GM6SLromvaVT0IgmoqDjES/M38NT7aygKOXde3J2fnKdr4msqFb1Iglm08Uvumb6CrC17ueCMltz/g96ktWgY7VgSRSp6kQSx++BRHnsvmykLNtK6cX3+MDqdYb11Tbyo6EXinrvzxqLNPDwri92HCrnxnE6MH9qdRvX011tK6CdBJI7lbt/HPdNX8Nn6XQxIa8pfruhDr7ZNoh1LYoyKXiQOHTpazO8/zOF/Pl1Hw7q1eeTKPlyb0Z5auiZeyqCiF4kzH67exr1vrSTvy0Ncld6OX1zag5RGuiZeTkxFLxIn8ncf4rdvr2T2ym10bdWIKWO+peX8JBAVvUiMKywO8ad/rOfpD3IIufPzYWfw43M7U7d2rWhHkzihoheJYQu/2MU901eweus+vtujFb/5wZm0b65r4qViVPQiMejLA0d59N3VTM3cRJvT6vP8Dwdyca/WuiZeToqKXiSGuDt/W5jHI7Oy2Hu4iDHndeb273YjWdfEyynQT49IjMjeuo9fvbmcBRu+ZGCHZjx4RW96ttE18XLqVPQiUXbwaBET5ubwx0/X06h+bR67qg/XDNQ18VJ5VPQiUfT3nALuen0Zm3cf4pqB7fjFpT1pnlw32rEkwajoRaJg3+FCHp61mlc/30jnlGSm3XQ2gzo1j3YsSVAqepFqdmwWn7/nEGPO68wdQ7tTv47uEy9VR0UvUk1Kz+JfGzuEgR2aRTuW1AAqepFq8GnODu5+fTlbNIuXKFDRi1Shr83iWybzN83iJQoC3SzDzIaZWbaZ5ZrZ3WVsH25my8xsiZllmtm5QfcVSVSf5uxg2NOfMnXBRsac15lZt31bJS9RUe6M3sySgInAUCAPWGBmM9x9VcSwucAMd3cz6wtMA3oE3FckoWgWL7EmyKGbQUCuu68DMLMpwHDgq7J29/0R45MBD7qvSCLRsXiJRUGKPhXYFPE4DxhcepCZjQAeAVoBl1VkX5F4p1m8xLIgRV/W+7D9uE+4Twemm9l5wAPARUH3BTCzMcAYgLS0tACxRGJD5Cz+pvM681PN4iXGBCn6PKB9xON2QP6JBrv7PDPrYmYpFdnX3ScDkwEyMjLK/MdAJJaUzOKzePXzTXRumcxrNw8hPU2zeIk9QYp+AdDNzDoBm4GRwKjIAWbWFVgbPhmbDtQFdgK7y9tXJB7NW7ODu19fxta9hzWLl5hXbtG7e5GZjQNmA0nAi+6+0szGhrdPAq4CrjezQuAQcK27O1DmvlX0vYhUOc3iJR5ZSR/HloyMDM/MzIx2DJGviZzF/+TbmsVLbDGzhe6eUdY2vTNWpByRs/gumsVLHFLRi3yDrx2LP78zP71Is3iJPyp6kTJoFi+JREUvUopm8ZJoVPQiYfsOF/LQzCymLNAsXhKLil4EzeIlsanopUYrPYt//eYhDNAsXhKMil5qLM3ipaZQ0UuNo1m81DQqeqlRNIuXmkhFLzXC3sOFPKxZvNRQKnpJeJ+EZ/HbNIuXGkpFLwkrchbftVUjzeKlxlLRS0KKnMWPPb8L4y/qplm81FgqekkoB48W8eDMLF75bKNm8SJhKnpJGMvz9nD71MWsLzjAmPM6c4fuFy8CqOglARSHnMnz1vHknGxSGtXj5R8PZkiXlGjHEokZKnqJa/m7D/HTqUv4bP0uLu1zOg+P6EPThnWjHUskpqjoJW69vTSfe6YvpzjkPH51X64e2A4zi3YskZijope4s+9wIffNWMkbizbTv31TJozsT4cWydGOJRKzVPQSVxZ+sYvxU5ew+ctD3Pbdbtz6na7USaoV7VgiMS3Q3xAzG2Zm2WaWa2Z3l7F9tJktC/+Zb2b9IrZtMLPlZrbEzDIrM7zUHEXFIZ56fw3XTPon7jDtprO5Y2h3lbxIAOXO6M0sCZgIDAXygAVmNsPdV0UMWw+c7+5fmtklwGRgcMT2C929oBJzSw2ycedBxk9dzKKNu7kyPZXf/uBMGtevE+1YInEjyKGbQUCuu68DMLMpwHDgq6J39/kR4/8FtKvMkFIzuTuvL9rMfW+toFYt45nrBvCDfm2jHUsk7gQp+lRgU8TjPL4+Wy/tRuDdiMcOzDEzB55398kVTik1zp6Dhfxy+nJmLt/CoE7Neera/qQ2bRDtWCJxKUjRl3W9mpc50OxCSor+3IhPn+Pu+WbWCnjfzFa7+7wy9h0DjAFIS0sLEEsS1fy1BfzXtKXs2HeEnw87g5vO60JSLV02KXKygpzJygPaRzxuB+SXHmRmfYEXgOHuvvPY5909P/zf7cB0Sg4FHcfdJ7t7hrtntGzZMvh3IAnjaFGIR97NYvQLn9GgThJv3DKEWy7oqpIXOUVBZvQLgG5m1gnYDIwERkUOMLM04A3gh+6+JuLzyUAtd98X/vhi4P7KCi+JI3f7fsZPXcyKzXu5blAav768Jw3r6upfkcpQ7t8kdy8ys3HAbCAJeNHdV5rZ2PD2ScC9QAvgufA7E4vcPQNoDUwPf6428Iq7v1cl34nEJXfn5c828uDMVTSok8TkHw7k4jNPj3YskYRi7mUebo+qjIwMz8zUJfeJbuf+I9z1+jI+yNrOt7ul8OQ1/WjVpH60Y4nEJTNbGJ5gH0e/G0tUfJy9nTv/toy9hwq59/Je/MeQjtTSsXiRKqGil2p1uLCYR99dzUvzN3BG68b85cZB9GzTJNqxRBKail6qTdaWvdw+ZTFrtu3nhnM6ctewHloYRKQaqOilyoVCzov/WM/v3svmtIZ1+POPBnF+d11CK1JdVPRSpbbtPcydf1vKpzkFXNSzNY9d1YcWjepFO5ZIjaKilyrz3oqt/OKNZRwqLOahEb0ZNShNC4OIRIGKXirdgSNFPPDOKqYs2ETv1CY8fe0AurZqFO1YIjWWil4q1dJNuxk/dQkbdh5g7PlduGNod+rW1j3jRaJJRS+VojjkTPpkLU+9v4aWjevxyo+/xdldWkQ7loigopdKkPflQe6YtpTP1+/isr5tePiKPpzWUAuDiMQKFb2ckreWbOZXb64gFHKevKYfV6an6oSrSIxR0ctJ2Xu4kPveWsn0xZtJT2vK09cOIK1Fw2jHEpEyqOilwhZs2MX4KUvYuvcw4y/qxrgLu1Jbi3SLxCwVvQRWWBzimbk5TPwol9RmDZh209kM7NAs2rFEpBwqeglkQ8EBbp+6hKWbdnNVejt+84NeNK6vE64i8UBFL+V6c/Fm7pm+nKRaxrOjBnB537bRjiQiFaCilxM6eLSI38xYybTMPM7q2IwJIwfQtmmDaMcSkQpS0UuZsrfuY9wri8jdsZ9xF3Zl/EXddMJVJE6p6OVr3J2pCzZx34yVNK5fh7/8aDDndkuJdiwROQUqevnKvsOF/HL6Ct5ems85XVvw1LX9adVYa7iKxDsVvQCwPG8P415dxKZdB7nz4u7cfEFXkrSGq0hCUNHXcO7OS/M38PCsLFIa1WPqTWdzVsfm0Y4lIpUo0Nk1MxtmZtlmlmtmd5exfbSZLQv/mW9m/YLuK9Gz++BRbvrLQn779irO69aSWbd9WyUvkoDKndGbWRIwERgK5AELzGyGu6+KGLYeON/dvzSzS4DJwOCA+0oULPziS257dTHb9x3mV5f15MZzO+lmZCIJKsihm0FArruvAzCzKcBw4Kuydvf5EeP/BbQLuq9Ur1DIeX7eOp6Yk03bpvV5bewQ+rVvGu1YIlKFghR9KrAp4nEeMPgbxt8IvFvRfc1sDDAGIC0tLUAsqaiC/Ue4Y9pS5q3ZwWV92vDIVX1ootsYiCS8IEVf1u/zXuZAswspKfpzK7qvu0+m5JAPGRkZZY6Rkzd/bQHjpyxh96FCLdQtUsMEKfo8oH3E43ZAfulBZtYXeAG4xN13VmRfqTrFIeeZuTk882EOnVKS+fOPBtGzTZNoxxKRahSk6BcA3cysE7AZGAmMihxgZmnAG8AP3X1NRfaVqrN1z2Fun7KYz9bv4qr0dtw//EyS6+mKWpGapty/9e5eZGbjgNlAEvCiu680s7Hh7ZOAe4EWwHPhwwFF7p5xon2r6HuRCB9lb+e/pi3l0NFinrimH1cPbFf+TiKSkMw99g6HZ2RkeGZmZrRjxKXC4hBPzM7m+Xnr6HF6Y54dlU7XVo2iHUtEqpiZLXT3jLK26ff4BLJp10Fum7KYxRt3M3pwGr++vBf16yRFO5aIRJmKPkG8t2ILP39tGe4wcVQ6l/VtE+1IIhIjVPRx7nBhMY/MyuLP//yCvu1O49nr0klr0TDasUQkhqjo49j6ggOMe2URK/P38uNzO/HzYT2oW1uLg4jI16no49RbSzbzyzeWU6d2LV64PoOLerWOdiQRiVEq+jhz6Ggxv5mxkqmZm7SOq4gEoqKPI2u27eM/X9Y6riJSMSr6OODuTMssWce1UT2t4yoiFaOij3H7Dhdyz/QVzNA6riJyklT0MWzF5j2Me2URG7WOq4icAhV9DHJ3/jx/Aw/PWk3z5LpMGXM2gzppiT8ROTkq+hiz52AhP3ttKXNWbeO7PVrx+DX9aJ5cN9qxRCSOqehjiNZxFZGqoKKPAaGQM/nTdTw+W+u4ikjlU9FHmdZxFZGqpqKPon+u3cntUxZrHVcRqVIq+igoDjnPfpjLhLlr6JiSzEs3DKJXW63jKiJVQ0VfzXbuP8L4qUv4NKeAEQNSefCK3lrHVUSqlBqmGmVu2MW4Vxaz6+BRHrmyDyPPaq9DNSJS5VT01cDdeeHT9Tz63mraNWvA9FuGcGbb06IdS0RqCBV9FdtzsJA7X1vK+6u2cUnv03ns6r66qkZEqlWge9ya2TAzyzazXDO7u4ztPczsn2Z2xMzuLLVtg5ktN7MlZpZZWcHjwfK8PVz+7Kd8tHo7917ei+dGp6vkRaTalTujN7MkYCIwFMgDFpjZDHdfFTFsF3AbcMUJvsyF7l5wilnjhrvz1399wQPvZJHSqC7Txp5NelqzaMcSkRoqyKGbQUCuu68DMLMpwHDgq6J39+3AdjO7rEpSxpH9R4r4xRvLeXtpPhec0ZKn/q0/zXSvGhGJoiBFnwpsinicBwyuwHM4MMfMHHje3SdXYN+4kr11Hze/vJANBQf42ffO4Obzu1BLtxUWkSgLUvRlNZVX4DnOcfd8M2sFvG9mq9193nFPYjYGGAOQlpZWgS8fG15bmMev3lxO4/p1ePnH3+LsLi2iHUlEBAh2MjYPaB/xuB2QH/QJ3D0//N/twHRKDgWVNW6yu2e4e0bLli2DfvmoO1xYzF2vLePOvy1lQPtmzLztXJW8iMSUIDP6BUA3M+sEbAZGAqOCfHEzSwZqufu+8McXA/efbNhYs77gADf/dSGrt+5j3IVd+enQ7loBSkRiTrlF7+5FZjYOmA0kAS+6+0ozGxvePsnMTgcygSZAyMzGA72AFGB6+N2ftYFX3P29KvlOqtnMZVu46/Vl1Eky/nTDWVx4RqtoRxIRKVOgN0y5+yxgVqnPTYr4eCslh3RK2wv0O5WAseZoUYiHZ2Xx0vwNDEhrysRR6bRt2iDasURETkjvjK2AvC8P8p+vLGbppt3ceG4n7hrWg7q1A73nTEQkalT0Ac3N2sYd05YSCjmT/j2dYb3bRDuSiEggKvpyFBWHeGLOGiZ9spYz2zbhudHpdGiRHO1YIiKBqei/wba9h7n11cV8vn4Xowance/lvahfJynasUREKkRFfwL/yC3g9imLOXCkmKeu7ceIAWWdaxYRiX0q+lJCIefZj3J56oM1dG3ZiFd/kk631o2jHUtE5KSp6COUXubvoRG9aVhXL5GIxDe1WFjkMn8Pj+jDdYO0zJ+IJIYaX/THlvl77L3VpDZrwBs3D6F3qpb5E5HEUaOLfs+hQu78W8kyf8POPJ3fXaNl/kQk8dTYol+et4dbXlnIlt2H+fXlvfjROR11qEZEElKNK3p356+fbeSBt1fRolFdpt50NgM7aJk/EUlcNaroD4SX+ZsRXubvv/+tP821zJ+IJLgaU/TZW/dxy8sLWa9l/kSkhqkRRf/6wjzueXM5jerV4a8/HsyQLinRjiQiUm0SuugPFxZz31srmZq5icGdmvP76wbQqkn9aMcSEalWCVv06wsOcMvLi8jaspf/vLALP72oO7WTdO94Eal5ErLoZy3fws9fW0ZtLfMnIpJYRR+5zF//9k2ZODqdVC3zJyI1XMIU/Z6DhVz/p89Zumk3PzqnE3dfomX+REQggYq+cf3adGjekLHndeaSPlrmT0TkmEBTXjMbZmbZZpZrZneXsb2Hmf3TzI6Y2Z0V2bey1KplPHPdAJW8iEgp5Ra9mSUBE4FLgF7AdWbWq9SwXcBtwBMnsa+IiFShIDP6QUCuu69z96PAFGB45AB33+7uC4DCiu4rIiJVK0jRpwKbIh7nhT8XxKnsKyIilSBI0Zd1QxgP+PUD72tmY8ws08wyd+zYEfDLi4hIeYIUfR7QPuJxOyA/4NcPvK+7T3b3DHfPaNmyZcAvLyIi5QlS9AuAbmbWyczqAiOBGQG//qnsKyIilaDc6+jdvcjMxgGzgSTgRXdfaWZjw9snmdnpQCbQBAiZ2Xigl7vvLWvfKvpeRESkDOYe9HB79cnIyPDMzMxoxxARiRtmttDdM8rcFotFb2Y7gC9OcvcUoKAS41SleMoK8ZU3nrJCfOWNp6wQX3lPJWsHdy/zBGdMFv2pMLPME/2rFmviKSvEV954ygrxlTeeskJ85a2qrLrrl4hIglPRi4gkuEQs+snRDlAB8ZQV4itvPGWF+MobT1khvvJWSdaEO0YvIiJfl4gzehERiRCXRR/g/vijzWxZ+M98M+sXjZwRecrLOzycdUn4fj/nRiNnOEug9QPM7CwzKzazq6szXxk5ynttLzCzPeHXdomZ3RuNnOEs5b624bxLzGylmX1S3RlLZSnvtf1ZxOu6Ivzz0DxGs55mZm+b2dLwa3tDNHJG5CkvbzMzmx7uhc/NrPcpPaG7x9UfSt5huxboDNQFllLyLtzIMUOAZuGPLwE+i/G8jfi/w2h9gdWxmjVi3IfALODqGH9tLwDeiVbGCmZtCqwC0sKPW8Vy3lLjvw98GKtZgV8Cj4U/bknJGhp1Yzjv48B94Y97AHNP5TnjcUYf5P748939y/DDf1FyM7VoCZJ3v4f/jwLJBL87aGULun7ArcDrwPbqDFeGeFrvIEjWUcAb7r4RStZ5qOaMkSr62l4HvFotyY4XJKsDjc3MKJlY7QKKqjfmV4Lk7QXMBXD31UBHM2t9sk8Yj0Vf0Xvc3wi8W6WJvlmgvGY2wsxWAzOBH1VTttLKzWpmqcAIYFI15jqRoD8LZ4d/ZX/XzM6snmjHCZK1O9DMzD42s4Vmdn21pTte4L9nZtYQGEbJP/7RECTrs0BPSu6euxy43d1D1RPvOEHyLgWuBDCzQUAHTmHCGo9FX5F73F9ISdHfVaWJvlmgvO4+3d17AFcAD1R1qBMIkvVp4C53L676OOUKkncRJW8N7wf8HnizqkOdQJCstYGBwGXA94Bfm1n3qg52AhVZh+L7wD/cfVcV5vkmQbJ+D1gCtAX6A8+aWZOqjXVCQfI+Ssk/+kso+Q16MafwG0i5d6+MQYHucW9mfYEXgEvcfWc1ZStLhe7n7+7zzKyLmaW4e3XfnyNI1gxgSslvwKQAl5pZkbu/WS0Jv67cvO6+N+LjWWb2XAy/tnlAgbsfAA6Y2TygH7CmeiIelyXoz+1IonfYBoJlvQF4NHyINNfM1lNy7Pvz6on4NUF/bm8ACB9uWh/+c3KicTLiFE9k1AbWAZ34vxMZZ5YakwbkAkPiJG9X/u9kbDqw+djjWMtaavxLRPdkbJDX9vSI13YQsDFWX1tKDi3MDY9tCKwAesfqaxsedxolx7uTY/zn4A/Ab8Iftw7/HUuJ4bxNCZ8sBn4C/O+pPGfczeg9wP3xgXuBFsBz4ZlnkUfppkYB814FXG9mhcAh4FoP/x+OwawxI2Deq4GbzayIktd2ZKy+tu6eZWbvAcuAEPCCu6+o7qxB84aHjgDmeMlvIVERMOsDwEtmtpySQyd3efX/VleRvD2B/zWzYkquxLrxVJ5T74wVEUlw8XgyVkREKkBFLyKS4FT0IiIJTkUvIpLgVPQiIglORS8ikuBU9CIiCU5FLyKS4P4/L6KnFj6DLFcAAAAASUVORK5CYII=\n",
|
|
"text/plain": [
|
|
"<Figure size 432x288 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"#set up axis\n",
|
|
"x = np.linspace(-50, 50, 301)\n",
|
|
"z = np.linspace(-50, 50, 301)\n",
|
|
"\n",
|
|
"#New coil\n",
|
|
"HH_Coil = BC.BCoil(HH = 1, distance = 54 ,radius = 48 , layers = 4, windings = 4, wire_height = 1, wire_width = 1)\n",
|
|
"\n",
|
|
"#Compensation Coil\n",
|
|
"HH_Coil_comp = BC.BCoil(HH = 1, distance = 54 ,radius = 37, layers = 4, windings = 4,wire_height = 1, wire_width = 1)\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"#HH_Coil_44.Bz_plot_HH(I,x,z)\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "5eef49ab",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.8.8"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|