DyLab_3D_MOT/Coil_geometry/11_Final_HH.py
2021-11-02 10:02:55 +01:00

105 lines
2.9 KiB
Python

# -*- coding: utf-8 -*-
"""
Created on Mon Aug 23 17:40:37 2021
@author: Joschka
"""
import matplotlib.pyplot as plt
import numpy as np
#from src import B_field_calculation as bf
from src import coil_class as BC
#from IPython import get_ipython
#get_ipython().run_line_magic('matplotlib', 'qt')
#get_ipython().run_line_magic('matplotlib', 'inline')
#set up axis
x = np.linspace(-15, 15, 30001)
z = np.linspace(-15, 15, 30001)
# New coil
# Wire_1 = [0.5, 0.568]
Wire_1 = [0.45, 0.514]
#I_current = 0.94
HH_Coil = BC.BCoil(HH = 1, distance = 54, radius = 48, layers = 8, windings = 9, wire_height = Wire_1[0], wire_width = Wire_1[0], insulation_thickness=(Wire_1[1] - Wire_1[0]) / 2, is_round = True, winding_scheme= 2)
I_current = 64 / HH_Coil.get_N() * 1.25
#set radius plus distance
HH_Coil.set_R_outer(50.5 - HH_Coil.get_tot_wire_width()*1e3)
HH_Coil.set_d_min(47.15)
print(f"height = {HH_Coil.get_coil_height()}")
HH_Coil.print_info()
Bz, Bx = HH_Coil.B_field(I_current, x, z, raster = 10)
B_tot_z, B_tot_x = HH_Coil.B_field(I_current, x, z, raster = 10)
Bz_curv = BC.BCoil.curv(Bz, z)
HH_Coil.cooling(I_current,28)
print(f"B_z(0) = {Bz[15000]} G")
print(f"B_z_curvature(0) = {Bz_curv[15000]:.10f} G/cm^2")
print(f"B_z(1 μm) = {Bz[15001]}")
print(f"B_z(1 mm) = {Bz[16000]}")
print(f"Diff B 1 μm: {Bz[15001] - Bz[15000]}, relative: {(Bz[15001] - Bz[15000])/Bz[15000]}")
print(f"Diff B 1 mm: {Bz[16000] - Bz[15000]}, relative: {(Bz[16000] - Bz[15000])/Bz[15000]}")
print(f"Diff B 0.5 mm: {Bz[15500] - Bz[15000]}, relative: {(Bz[15500] - Bz[15000])/Bz[15000]}")
plt.figure(300)
#Field plot
##########################
plt.subplot(2,1,1)
plt.plot(z,Bz,linestyle = "solid", label = r"$B_z along z-axis")
plt.plot(z,B_tot_z, linestyle = "dashed", label = "New B_tot along z-axis")
#plt.plot(x,B_tot_x, label = "B_tot along x-axis")
#plt.plot(z,B_z_comp,linestyle = "solid", label = r"$B_{z,1}$, d = 54 mm, R = 48.8 mm, I = 5 A, 4 x 4")
#plt.plot(z,B_tot,linestyle = "solid", label = r"$B_{z,1} + B_{z,2}$")
#plt.xlim(-0.01,0.01)
plt.title("B-field" )
plt.ylabel(r"$B_z$ [G]")
plt.xlabel("z-axis [mm]")
plt.legend()#bbox_to_anchor=(1.05, 1), loc='upper left')
plt.subplot(2,1,2)
plt.plot(z,Bz_curv,linestyle = "solid", label = r"$\nabla_z^2 B_{ref}$, d = 44 mm, R = 44 mm")
#plt.plot(z,B_z_comp_curv,linestyle = "solid", label = r"$\nabla_z^2 B_{z,1}$, d = 54 mm, R = 48.8 mm, I = 5 A")
#plt.plot(z,B_tot_curv,linestyle = "solid", label = r"$\nabla_z^2 B_{z,1} + B_{z,2}$")
plt.ylabel(r"$\nabla_z^2 B_z [G/cm^2]$")
plt.xlabel("z-axis [mm]")#plt.xlim(-10,10)
plt.title("Curvature of B-field")
plt.legend()#bbox_to_anchor=(1.05, 1), loc='upper left')
#plt.savefig("output/first_compensation_idea.png")
plt.show()
"""
AHH ############################################################################
###############################################################################
###############################################################################
"""