DyLab_3D_MOT/Benchmarking/comparison_HH_normal.py
schoener dc1e81ee2f Refactor B_multiple --> B_field
Update B_field function with raster function
2021-10-20 16:49:17 +02:00

126 lines
3.3 KiB
Python

# -*- coding: utf-8 -*-
"""
Created on Mon Aug 16 11:49:41 2021
@author: Joschka
"""
import matplotlib.pyplot as plt
import numpy as np
import B_field_calculation as bf
from IPython import get_ipython
get_ipython().run_line_magic('matplotlib', 'qt')
#get_ipython().run_line_magic('matplotlib', 'inline')
#set up axis
x_m = np.linspace(-0.05,0.05,51)
z_m = np.linspace(-0.05,0.05,51)
z = z_m*1e3
x = x_m*1e3 #for plotting in mm
#Import Values from simulation
B_z_sim = np.loadtxt('data/B_z_HH.txt')
B_x_sim = np.loadtxt('data/B_x_HH.txt')
################# My simulation #########################
I = 5
HH = 1
d_coils = 44
R_inner = 44
layers = 10
windings = 2
wire_width = 1
wire_height = 2.6
B_z, B_x = bf.B_field(I, HH, R_inner, d_coils, layers, windings, wire_width, wire_height, x_m, z_m)
#B_test = B_field_ideal_AHH(layers*windings,I,R_inner*1e-3,d_coils*1e-3,z_m)
#B_x = np.concatenate((-np.flip(B_r),B_r[1:len(B_r)]))
#Calculate gradients/curvature
B_z_sim_grad = np.gradient(np.gradient(B_z_sim,z_m),z_m)/1e4
B_x_sim_grad = np.gradient(B_x_sim,x_m)/100
B_z_grad = np.gradient(np.gradient(B_z,z_m),z_m)/1e4
B_x_grad = np.gradient(B_x,x_m)/100
#Calculate relative differences in permille
rel_diff_Bz = (B_z-B_z_sim)/B_z
rel_diff_Bx = (B_x-B_x_sim)/B_x
rel_diff_Bz_grad = (B_z_grad-B_z_sim_grad)/B_z_grad
rel_diff_Bx_grad = (B_x_grad-B_x_sim_grad)/B_x_grad
#Plotting
plt.figure(figsize=(20,18))
plt.rcParams.update({'font.size': 15})
plt.suptitle("Helmholtz coil field B_z along z-axis, comparison of simulations", fontsize=30)
#Field plot
##########################
plt.subplot(3,2,1)
plt.plot(z,B_z,linestyle = "solid", label = r"$B_z$: Result via elliptic integrals")
plt.plot(z,B_z_sim,linestyle = "dashdot", label = r"$B_{z, sim}$: Numerical Matlab simulation")
plt.plot(z,(B_z-B_z_sim), label = r"$B_z - B_{z, sim}$")
#plt.xlim(-0.01,0.01)
plt.title("B-field" ,fontsize = 30)
plt.ylabel(r"$B_z$ [G]")
plt.xlabel("z-axis [mm]")
plt.legend()
#############################
plt.subplot(3,2,3)
plt.plot(z,(B_z-B_z_sim), label = r"$B_z - B_{z, sim}$")
plt.ylabel("absolute deviation [G]")
plt.xlabel("z-axis [mm]")
plt.legend()
#############################
plt.subplot(3,2,5)
plt.plot(z,1000*rel_diff_Bz, label = "$(B_z - B_{z, sim}) / B_z$")
plt.ylabel("relative deviation [‰]")
plt.xlabel("z-axis [mm]")
plt.legend()
######################Gradient plot############################
################
plt.subplot(3,2,2)
plt.plot(z,B_z_grad,linestyle = "solid", label = r"$\nabla_z^2 B_z$: Result via elliptic integrals")
plt.plot(z,B_z_sim_grad,linestyle = "dashdot", label = r"$\nabla_z^2 B_{z, sim}$: Numerical Matlab sim.")
plt.plot(z,(B_z_grad-B_z_sim_grad), label = r"$\nabla_z^2 B_z - \nabla_z^2 B_{z, sim}$")
plt.ylabel(r"$\nabla_z^2 B_z [G/cm^2]$")
plt.xlabel("z-axis [mm]")
plt.title("Curvature of B-field",fontsize = 30)
plt.legend(loc='lower right')
#################
plt.subplot(3,2,4)
plt.plot(z,(B_z_grad-B_z_sim_grad), label = r"$\nabla_z^2 B_z - \nabla_z^2 B_{z, sim}$")
plt.ylabel(r"absolute deviation $[G/cm^2]$")
plt.xlabel("z-axis [mm]")
plt.legend()
#####################
plt.subplot(3,2,6)
plt.plot(z,1000*rel_diff_Bz_grad, label = r"$(\nabla_z^2 B_z - \nabla_z^2 B_{z, sim}) / \nabla_z^2 B_z$")
plt.ylim(-57,10)
plt.ylabel("relative deviation [‰]")
plt.xlabel("z-axis [mm]")
plt.legend()
plt.show()