DyLab_3D_MOT/Coil_geometry_AHH/11_Final_HH.py
schoener dc1e81ee2f Refactor B_multiple --> B_field
Update B_field function with raster function
2021-10-20 16:49:17 +02:00

104 lines
2.8 KiB
Python

# -*- coding: utf-8 -*-
"""
Created on Mon Aug 23 17:40:37 2021
@author: Joschka
"""
import matplotlib.pyplot as plt
import numpy as np
#from src import B_field_calculation as bf
from src import coil_class as BC
from IPython import get_ipython
get_ipython().run_line_magic('matplotlib', 'qt')
#get_ipython().run_line_magic('matplotlib', 'inline')
#set up axis
x = np.linspace(-20, 20, 40001)
z = np.linspace(-20, 20, 40001)
#New coil
I_current = 10
d=69.4
HH_Coil = BC.BCoil(HH = -1, distance = d ,radius = 46.875 ,layers = 4, windings = 4 , wire_width= 1, wire_height= 2 ,layers_spacing = 0.25, windings_spacing= 0.25)
HH_Coil.print_info()
Bz, Bx = HH_Coil.B_field(I_current, x, z, raster = 10)
B_tot_z, B_tot_x = HH_Coil.B_field(I_current, x, z, raster = 10)
Bz = BC.BCoil.Bgrad(Bz, z)
HH_Coil.cooling(I_current,28)
print(f"B_z(0) = {Bz[15000]} G")
#print(f"B_z_curvature(0) = {Bz_curv[15000]:.10f} G/cm^2")
print(f"B_z(1 μm) = {Bz[15001]}")
print(f"B_z(1 mm) = {Bz[16000]}")
print(f"Diff B 1 μm: {Bz[15001] - Bz[15000]}, relative: {(Bz[15001] - Bz[15000])/Bz[15000]}")
print(f"Diff B 0.5 mm: {Bz[15500] - Bz[15000]}, relative: {(Bz[15500] - Bz[15000])/Bz[15000]}")
print(f"Diff B 1 mm: {Bz[25000] - Bz[15000]}, relative: {(Bz[25000] - Bz[15000])/Bz[15000]}")
print(f"Diff B 1 mm: {Bz[32000] - Bz[15000]}, relative: {(Bz[32000] - Bz[15000])/Bz[15000]}")
print(z[32000])
print(z[15000])
plt.figure(300)
"""
#Field plot
##########################
plt.subplot(2,1,1)
plt.plot(z,Bz,linestyle = "solid", label = r"$B_z along z-axis")
plt.plot(z,B_tot_z, linestyle = "dashed", label = "New B_tot along z-axis")
#plt.plot(x,B_tot_x, label = "B_tot along x-axis")
#plt.plot(z,B_z_comp,linestyle = "solid", label = r"$B_{z,1}$, d = 54 mm, R = 48.8 mm, I = 5 A, 4 x 4")
#plt.plot(z,B_tot,linestyle = "solid", label = r"$B_{z,1} + B_{z,2}$")
#plt.xlim(-0.01,0.01)
plt.title("B-field" )
plt.ylabel(r"$B_z$ [G]")
plt.xlabel("z-axis [mm]")
plt.legend()#bbox_to_anchor=(1.05, 1), loc='upper left')
plt.subplot(2,1,2)
plt.plot(z,Bz_curv,linestyle = "solid", label = r"$\nabla_z^2 B_{ref}$, d = 44 mm, R = 44 mm")
#plt.plot(z,B_z_comp_curv,linestyle = "solid", label = r"$\nabla_z^2 B_{z,1}$, d = 54 mm, R = 48.8 mm, I = 5 A")
#plt.plot(z,B_tot_curv,linestyle = "solid", label = r"$\nabla_z^2 B_{z,1} + B_{z,2}$")
plt.ylabel(r"$\nabla_z^2 B_z [G/cm^2]$")
plt.xlabel("z-axis [mm]")#plt.xlim(-10,10)
plt.title("Curvature of B-field")
plt.legend()#bbox_to_anchor=(1.05, 1), loc='upper left')
#plt.savefig("output/first_compensation_idea.png")
plt.show()
"""
"""
AHH ############################################################################
###############################################################################
###############################################################################
"""