DyLab_3D_MOT/FINAL_Coil/Final_Field_quality.py
Joschka Schöner d25b3cb5d8 Save
2022-05-04 11:30:48 +02:00

114 lines
3.0 KiB
Python

# -*- coding: utf-8 -*-
"""
Created on Mon Aug 23 17:40:37 2021
@author: Joschka
"""
import matplotlib.pyplot as plt
import numpy as np
#from src import B_field_calculation as bf
from src import coil_class as BC
#from IPython import get_ipython
#get_ipython().run_line_magic('matplotlib', 'qt')
#get_ipython().run_line_magic('matplotlib', 'inline')
#set up axis
x = np.linspace(-15, 15, 30001)
z = np.linspace(-15, 15, 30001)
# New coil
Wire_1 = [0.5, 0.568]
#Wire_1 = [0.45, 0.514]
#I_current = 0.94
HH_Coil = BC.BCoil(HH = 1, distance = 54, radius = 48, layers = 8, windings = 8, wire_height = 0.5,
wire_width = 0.5, insulation_thickness = (0.546-0.5)/2, is_round = True,
winding_scheme= 2)
HH_Coil.set_R_inner(45.6)
HH_Coil.set_d_min(2*24.075)
HH_Coil.print_info()
R = HH_Coil.resistance(22.5)
print(f"U = {1 * R}")
I_current = 64 / HH_Coil.get_N() * 1.25
# 0.4 to get from +-30300
HH_Coil.print_info()
#Bz, Bx = HH_Coil.B_field(I_current, x, z, raster = 7)
Bz, B_x_tot = HH_Coil.B_tot_along_axis(I_current, x, z, raster = 7)
Bz_curv = BC.BCoil.curv(Bz, z)
#HH_Coil.cooling(I_current,28)
print(f"Bz(0) = {Bz[15000]} G")
print(f"B_z_curvature(0) = {Bz_curv[15000]:.10f} G/cm^2")
#print(f"Bz(1 μm) = {Bz[15001]}")
#print(f"Bz(1 mm) = {Bz[16000]}")
print(f"Diff B +/- 1 μm: {Bz[15001] - Bz[15000]}, relative: {(Bz[15001] - Bz[15000])/Bz[15000]}")
print(f"Diff B +/- 0.5 mm: {Bz[15500] - Bz[15000]}, relative: {(Bz[15500] - Bz[15000])/Bz[15000]}")
print(f"Diff B +/- 1 mm: {Bz[16000] - Bz[15000]}, relative: {(Bz[16000] - Bz[15000])/Bz[15000]}")
#print(f"Diff B +/- 15 mm: {Bz[30000] - Bz[15000]}, relative: {(Bz[30000] - Bz[15000])/Bz[15000]}")
"""
plt.figure(300)
#Field plot
##########################
plt.subplot(2,1,1)
plt.plot(z,Bz,linestyle = "solid", label = r"$Bz along z-axis")
plt.plot(z,B_tot_z, linestyle = "dashed", label = "New B_tot along z-axis")
#plt.plot(x,B_tot_x, label = "B_tot along x-axis")
#plt.plot(z,B_z_comp,linestyle = "solid", label = r"$B_{z,1}$, d = 54 mm, R = 48.8 mm, I = 5 A, 4 x 4")
#plt.plot(z,B_tot,linestyle = "solid", label = r"$B_{z,1} + B_{z,2}$")
#plt.xlim(-0.01,0.01)
plt.title("B-field" )
plt.ylabel(r"$Bz$ [G]")
plt.xlabel("z-axis [mm]")
plt.legend()#bbox_to_anchor=(1.05, 1), loc='upper left')
plt.subplot(2,1,2)
plt.plot(z,Bz_curv,linestyle = "solid", label = r"$\nabla_z^2 B_{ref}$, d = 44 mm, R = 44 mm")
#plt.plot(z,B_z_comp_curv,linestyle = "solid", label = r"$\nabla_z^2 B_{z,1}$, d = 54 mm, R = 48.8 mm, I = 5 A")
#plt.plot(z,B_tot_curv,linestyle = "solid", label = r"$\nabla_z^2 B_{z,1} + B_{z,2}$")
plt.ylabel(r"$\nabla_z^2 Bz [G/cm^2]$")
plt.xlabel("z-axis [mm]")#plt.xlim(-10,10)
plt.title("Curvature of B-field")
plt.legend()#bbox_to_anchor=(1.05, 1), loc='upper left')
#plt.savefig("output/first_compensation_idea.png")
plt.show()
"""
"""
AHH ############################################################################
###############################################################################
###############################################################################
"""