# -*- coding: utf-8 -*- """ Created on Mon Aug 23 17:40:37 2021 @author: Joschka """ import matplotlib.pyplot as plt import numpy as np #from src import B_field_calculation as bf from src import coil_class as BC from IPython import get_ipython get_ipython().run_line_magic('matplotlib', 'qt') #get_ipython().run_line_magic('matplotlib', 'inline') #set up axis x = np.linspace(-15, 15, 30001) z = np.linspace(-15, 15, 30001) #New coil I_current = 10 HH_Coil = BC.BCoil(HH = 1, distance = 70 ,radius = 40.5 , layers = 1, windings = 1, wire_height = 1, wire_width = 1,windings_spacing=0.25, layers_spacing = 0.25) HH_Coil.set_R_inner(40.5) HH_Coil.print_info() Bz, Bx = HH_Coil.B_field(I_current, x, z, raster = 10) Bz_curv = BC.BCoil.curv(Bz, z) HH_Coil.cooling(I_current) print(f"B_z(0) = {Bz[15000]} G") print(f"B_z_curvature(0) = {Bz_curv[15000]:.4f} G/cm^2") print(f"B_z(1 μm) = {Bz[15001]}") print(f"B_z(1 mm) = {Bz[16000]}") print(f"Diff B 1 μm: {Bz[15001] - Bz[15000]}, relative: {(Bz[15001] - Bz[15000])/Bz[15000]}") print(f"Diff B 1 mm: {Bz[16000] - Bz[15000]}, relative: {(Bz[16000] - Bz[15000])/Bz[15000]}") print(f"Diff B 0.5 mm: {Bz[15500] - Bz[15000]}, relative: {(Bz[15500] - Bz[15000])/Bz[15000]}") I_HH = 5 #calculate field B_z, B_x = HH_Coil.B_field(I_HH, x, z) #Calculate curvature B_z_curv = BC.BCoil.curv(B_z, z) plt.figure(300) #Field plot ########################## plt.subplot(2,1,1) plt.plot(z,B_z,linestyle = "solid", label = r"$B_{ref}$, reference, optimal HH-configuration d = 44 mm, R = 44 mm") #plt.plot(z,B_z_comp,linestyle = "solid", label = r"$B_{z,1}$, d = 54 mm, R = 48.8 mm, I = 5 A, 4 x 4") #plt.plot(z,B_tot,linestyle = "solid", label = r"$B_{z,1} + B_{z,2}$") #plt.xlim(-0.01,0.01) plt.title("B-field" ) plt.ylabel(r"$B_z$ [G]") plt.xlabel("z-axis [mm]") plt.legend()#bbox_to_anchor=(1.05, 1), loc='upper left') plt.subplot(2,1,2) plt.plot(z,B_z_curv,linestyle = "solid", label = r"$\nabla_z^2 B_{ref}$, d = 44 mm, R = 44 mm") #plt.plot(z,B_z_comp_curv,linestyle = "solid", label = r"$\nabla_z^2 B_{z,1}$, d = 54 mm, R = 48.8 mm, I = 5 A") #plt.plot(z,B_tot_curv,linestyle = "solid", label = r"$\nabla_z^2 B_{z,1} + B_{z,2}$") plt.ylabel(r"$\nabla_z^2 B_z [G/cm^2]$") plt.xlabel("z-axis [mm]")#plt.xlim(-10,10) plt.title("Curvature of B-field") plt.legend()#bbox_to_anchor=(1.05, 1), loc='upper left') #plt.savefig("output/first_compensation_idea.png") plt.show() """ AHH ############################################################################ ############################################################################### ############################################################################### """