# -*- coding: utf-8 -*- """ Created on Mon Aug 23 17:40:37 2021 @author: Joschka """ import matplotlib.pyplot as plt import numpy as np #from src import B_field_calculation as bf from src import coil_class as BC from IPython import get_ipython get_ipython().run_line_magic('matplotlib', 'qt') #get_ipython().run_line_magic('matplotlib', 'inline') #set up axis axis = 30001 #30001 for -15 to 15 = 1μm x = np.linspace(-15, 15, axis) z = np.linspace(-15, 15, axis) #New coil I_current = 5 HH_Coil = BC.BCoil(HH = 1, distance = 54 ,radius = 48 , layers = 4, windings = 4, wire_height = 1, wire_width = 1, windings_spacing=0.25, layers_spacing = 0.25) HH_Coil.set_R_outer(49.3) HH_Coil.set_d_min(49.8) HH_Coil.print_info() #Bz, Bx = HH_Coil.B_field(I_current,x,z,raster = 10) B_tot_z, B_tot_x = HH_Coil.B_tot_along_axis(I_current, x, z,raster = 8) Bz_curv = BC.BCoil.curv(B_tot_z, z) Bx_curv = BC.BCoil.curv(B_tot_x, x) HH_Coil.cooling(I_current,25) B_0 = B_tot_z[axis//2] print(f"B_tot(0,0) = {B_0} G") print(f"B_tot_x = {B_tot_x[15000]}") print(f"B_z_curvature(0) = {Bz_curv[axis//2]:.5f} G/cm^2") print(f"B_x_curvature(0) = {Bx_curv[axis//2]:.5f} G/cm^2") print("") print("Differences along z-axis:") print(f"B_tot_z(1 μm) = {B_tot_z[15001]}") print(f"B_tot_z(1 mm) = {B_tot_z[16000]}") print(f"Diff B 1 μm: {B_tot_z[15001] - B_0}, relative: {(B_tot_z[15001] - B_0)/B_0}") print(f"Diff B 1 mm: {B_tot_z[16000] - B_0}, relative: {(B_tot_z[16000] - B_0)/B_0}") print(f"Diff B 0.5 mm: {B_tot_z[15500] - B_0}, relative: {(B_tot_z[15500] - B_0)/B_0}") print(" ") print("Differences along x-axis:") print(f"B_tot_x(1 μm) = {B_tot_x[15001]}") print(f"B_tot_x(1 mm) = {B_tot_x[16000]}") print(f"Diff B 1 μm: {B_tot_x[15001] - B_0}, relative: {(B_tot_x[15001] - B_0)/B_0}") print(f"Diff B 1 mm: {B_tot_x[16000] - B_0}, relative: {(B_tot_x[16000] - B_0)/B_0}") print(f"Diff B 0.5 mm: {B_tot_x[15500] - B_0}, relative: {(B_tot_x[15500] - B_0)/B_0}") plt.figure(300) #Field plot ########################## plt.subplot(2,1,1) #plt.plot(z,B_totz,linestyle = "solid", label = r"$Bz along z-axis") #plt.plot(x,Bx,label = "B_x along x") plt.plot(z,B_tot_z, label = "New B_tot along z-axis") plt.plot(x,B_tot_x, label = "B_tot along x-axis") #plt.plot(z,B_z_comp,linestyle = "solid", label = r"$B_{z,1}$, d = 54 mm, R = 48.8 mm, I = 5 A, 4 x 4") #plt.plot(z,B_tot,linestyle = "solid", label = r"$B_{z,1} + B_{z,2}$") #plt.xlim(-0.01,0.01) plt.title("B-field" ) plt.ylabel(r"$Bz$ [G]") plt.xlabel("z-axis [mm]") plt.legend()#bbox_to_anchor=(1.05, 1), loc='upper left') plt.subplot(2,1,2) plt.plot(z,Bz_curv,linestyle = "solid", label = r"$\nabla_z^2 B_{ref}$, d = 44 mm, R = 44 mm") plt.plot(x,Bx_curv,label = "B_x_curv") #plt.plot(z,B_z_comp_curv,linestyle = "solid", label = r"$\nabla_z^2 B_{z,1}$, d = 54 mm, R = 48.8 mm, I = 5 A") #plt.plot(z,B_tot_curv,linestyle = "solid", label = r"$\nabla_z^2 B_{z,1} + B_{z,2}$") plt.ylabel(r"$\nabla_z^2 Bz [G/cm^2]$") plt.xlabel("z-axis [mm]")#plt.xlim(-10,10) plt.title("Curvature of B-field") plt.legend()#bbox_to_anchor=(1.05, 1), loc='upper left') #plt.savefig("output/first_compensation_idea.png") plt.show() """ AHH ############################################################################ ############################################################################### ############################################################################### """