import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl from src import coil_class as BC # %% # % matplotlib inline mpl.rcParams['xtick.direction'] = 'in' mpl.rcParams['ytick.direction'] = 'in' mpl.rcParams['xtick.top'] = True mpl.rcParams['ytick.right'] = True mpl.rcParams['xtick.major.size'] = 10 mpl.rcParams['xtick.major.width'] = 3 mpl.rcParams['xtick.minor.size'] = 10 mpl.rcParams['xtick.minor.width'] = 3 mpl.rcParams['ytick.major.size'] = 10 mpl.rcParams['ytick.major.width'] = 3 mpl.rcParams['ytick.minor.size'] = 10 mpl.rcParams['ytick.minor.width'] = 3 mpl.rcParams.update({'font.size': 22, 'axes.linewidth': 3, 'lines.linewidth': 3}) # %% HH_Coil = BC.BCoil(HH=1, distance=54, radius=48, layers=8, windings=8, wire_height=0.5, wire_width=0.5, insulation_thickness=(0.546 - 0.5) / 2, is_round=True, winding_scheme=2) HH_Coil.set_R_inner(45.6) HH_Coil.set_d_min(2 * 24.075) HH_Coil.print_info() AHH_Coil = BC.BCoil(HH=-1, distance=54, radius=48, layers=HH_Coil.get_layers, windings=2 * HH_Coil.get_windings, wire_height=0.5, wire_width=0.5, insulation_thickness=(0.546 - 0.5) / 2, is_round=True, winding_scheme=2) AHH_Coil.set_R_inner(45.6) AHH_Coil.set_d_min(HH_Coil.get_zmax() * 2 * 1e3 + 4) AHH_Coil.print_info() # %% # Calculate fields lim = 15 x, z = np.linspace(-lim, lim, 100), np.linspace(-lim, lim, 100) # z = np.linspace(-lim, lim, 100) I_HH = 1 HH_B_tot_z, HH_B_tot_x = HH_Coil.B_tot_along_axis(I_HH, x, z, raster=2) AHH_B_tot_z, AHH_B_tot_x = AHH_Coil.B_field(I_HH, x, z, raster=2) AHH_B_grad_z, AHH_B_grad_x = BC.BCoil.grad(AHH_B_tot_z, z), BC.BCoil.grad(AHH_B_tot_x, x) # %% c_orange = '#FF914D' c_blue = '#71C8F4' c_grey = '#545454' c_light_green = '97e144' my_colors = {'light_green': '#97e144', 'orange': '#FF914D', 'light_grey': '#545454', 'pastel_blue': '#1b64d1', 'light_blue': '#71C8F4', 'purple': '#7c588c'} c_field = my_colors['light_green'] c_grad = my_colors['purple'] fig, ax1 = plt.subplots(figsize=(11, 6)) ax1.set_title('Magnetic Field of inverted viewport coils', y=1.03) ax1.set_xlabel('z-/x- axis [mm]') ax1.set_ylabel('B-field per current [G/A]', color=c_field) ax1.tick_params(axis='y', labelcolor=c_field) ax1.plot(x, HH_B_tot_x, color=c_field, linestyle="dashed") ax1.plot(z, HH_B_tot_z, color=c_field) ax1.set_ylim(10.2, 11.01) ax2 = ax1.twinx() ax2.set_ylabel('Gradient per current [G/cm/A]', color=c_grad) ax2.tick_params(axis='y', labelcolor=c_grad) plt.plot(x, np.abs(AHH_B_grad_x), color=c_grad, linestyle="dashed") plt.plot(z, np.abs(AHH_B_grad_z), color=c_grad) ax2.set_ylim(2.1, 5.5) plt.show() # %% I = 1 Max_field = HH_Coil.max_field(I) def I_t_cut(time, coil, I_end, U_0): I = U_0 / coil.resistance(22) * (1 - np.exp(- time / coil.tau())) if I >= I_end: I = I_end return I def I_current(Coil, I_0, t): L = Coil.induct_perry() R = Coil.resistance(22.5) print(f"L={L}") print(f" R= {R}") tau = L / R print(f" τ = {tau}") I = I_0 * (1 - np.exp(-R / L * t)) return I I_t_cut_vec = np.vectorize(I_t_cut) fig, ax1 = plt.subplots(figsize=(11, 8)) ylim = (0, 11.5) t = np.linspace(0, 0.002, 10000) i_to_B = 10.64 fig, ax = plt.subplots(figsize = (11,7)) #fig.suptitle(f"Time response HH-coil: I_max = {I} A --> Max Field = {Max_field:.2f} G \n \n I(t) = U(t) / R * (1 - exp(- R/L * t))") ax.set_title("Time Response Offset Coil", y = 1.05) ax.text(0.6, 5, r'$I(t) = \frac{U(t)}{R} - \frac{L}{R} \cdot \frac{dI(t)}{dt} $', fontsize=34) ax.plot(t * 1e3, i_to_B * I_current(HH_Coil, I, t), label=f"U(t) = 1.5 V", zorder=1, color=my_colors['pastel_blue']) U_0 = 28 ax.plot(t * 1e3, i_to_B * I_t_cut_vec(t, HH_Coil, I, U_0), label=f"U(t) regulated via PI feedback loop", zorder=1, color=my_colors['light_green']) plt.vlines(3.1e-2, 0, 10.64, zorder=2, linestyles=(0, (1.5, 3.06)),color=my_colors['orange'], label='t = 30 μs') # for scaling in np.arange(2,5,0.5): # ax.plot(t * 1e3, I_t_exp(t, HH_Coil, I, 15, scaling), label=f"Exponential decay U") ax.set_xlabel("time [ms]") ax.set_ylabel("Magnetic field [G]") ax.set_ylim(ylim) ax.set_xlim(-0.09,2) ax.legend() plt.show()