import matplotlib.pyplot as plt import numpy as np #from src import B_field_calculation as bf from src import coil_class as BC from src import physical_constants as cs Wire_1 = [0.5, 0.568] #Wire_1 = [0.45, 0.514] #I_current = 0.94 HH_Coil = BC.BCoil(HH = 1, distance = 54, radius = 48, layers = 8, windings = 8, wire_height = Wire_1[0], wire_width = Wire_1[0], insulation_thickness=(Wire_1[1] - Wire_1[0]) / 2, is_round = True, winding_scheme= 2) e_cu = 3e-2 # emissivity copper, polished rho_cu = 1.7 * 1e-8 I = 3 # A surface = 10e-4 # S_coil = S_coil/2 print(f"Surface area = {surface}") def power_bal(T, h_air): T_0 = 22.5 P = 100e-3 f = h_air * surface * (T - T_0) - 0.5 * P return f print(e_cu * surface * cs.sigma_B ** 4 * (50 ** 4 - 22.5 ** 4)) T = np.linspace(20, 120, 500) T_calc = np.linspace(20, 2200, 1000) for h_air in [2.5, 10, 25]: pos_min = np.argmin(np.abs(power_bal(T_calc, h_air))) T_SS = T_calc[pos_min] print(f"T_ss = {T_SS} °C") plt.plot(T, power_bal(T, h_air), label=f"$h_{{air}} = {h_air} \; W/m^2 K$ , $T_{{SS}}$ = {T_SS:.2f}°C") plt.ylabel("Power balance [W]") plt.xlabel("temparature [°C]") plt.title(f"Power balance, free convection, AHH coil, I = {I} A, windings: 4 x 4") plt.legend() plt.show() print(AHH_opt.power(I, 25) / 2)