# -*- coding: utf-8 -*- """ Created on Mon Aug 23 17:40:37 2021 @author: Joschka """ import matplotlib.pyplot as plt import numpy as np from src import B_field_calculation as bf from src import coil_class as BC from IPython import get_ipython get_ipython().run_line_magic('matplotlib', 'qt') #get_ipython().run_line_magic('matplotlib', 'inline') #set up axis x = np.linspace(-50, 50, 301) z = np.linspace(-50, 50, 301) I = 5 HH = 1 d_coils = 44 R_mid = 44 layers = 6 windings = 2 wire_width = 1.7 wire_height = 2.6 #reference coil HH_Coil_44 = BC.BCoil(HH, 44 ,44, 6, 2, wire_width = 1.7, wire_height= 2.6) #Coil from first sketch HH_Coil_y = BC.BCoil(HH, 55.2 ,44, 6, 2, wire_width = 1.7, wire_height= 2.6) B_z_y, B_x_y = HH_Coil_y.B_multiple(6.5,x,z) B_z_y_curv = BC.BCoil.curv(B_z_y, z) d_coils_2 = 55.2 #New coil HH_Coil_54 = BC.BCoil(HH, 54 ,48.8, 4, 4, 1,1) HH_Coil_54.cooling(5) #Compensation Coil HH_Coil_78 = BC.BCoil(1,54,37,4, 4, 1,1) #HH_Coil_44.Bz_plot_HH(I,x,z) #HH_Coil_44.Bz_plot_HH_comp(HH_Coil_54,I,x,z) B_z, B_x = HH_Coil_44.B_multiple(I,x,z) B_z_2, B_x_2 = HH_Coil_54.B_multiple(I,x,z) B_z_3,B_x_3 = HH_Coil_78.B_multiple(-0.72,x,z) B_z_curvature = np.gradient(np.gradient(B_z,z),z)*1e2 B_z_curvature_2 = BC.BCoil.curv(B_z_2, z) B_z_curv_3 = BC.BCoil.curv(B_z_3, z) B_tot = B_z_2 + B_z_3 B_tot_curv = BC.BCoil.curv(B_tot, z) plt.figure(300) plt.suptitle("Helmholtz coil field B_z along z-axis, comparison to field yesterday") #Field plot ########################## plt.subplot(2,1,1) plt.plot(z,B_z_y,linestyle = "solid", label = r"$B_{sketch}$, B-field according to current solidworks sketch, d = 55.2 mm, R = 44 mm, 6 x 2") plt.plot(z,B_z_2,linestyle = "solid", label = r"$B_{z,1}$, d = 54 mm, R = 48.8 mm, I = 5 A, 4 x 4") #plt.xlim(-0.01,0.01) plt.title("B-field" ) plt.ylabel(r"$B_z$ [G]") plt.xlabel("z-axis [mm]") plt.legend() plt.subplot(2,1,2) plt.plot(z,B_z_y_curv,linestyle = "solid", label = r"$\nabla_z^2 B_{sketch}$, d = 55.2 mm, R = 44 mm, 6 x 2") plt.plot(z,B_z_curvature_2,linestyle = "solid", label = r"$\nabla_z^2 B_{z,1}$, d = 54 mm, R = 48.8 mm, I = 5 A") #plt.plot(z,B_z_curv_3,linestyle = "solid", label = r"$\nabla_z^2 B_{z,2}$, d = 54 mm, R = 37 mm, I = -0.7 A") #plt.plot(z,B_tot_curv,linestyle = "solid", label = r"$\nabla_z^2 B_{z,1} + B_{z,2}$") plt.ylabel(r"$\nabla_z^2 B_z [G/cm^2]$") plt.xlabel("z-axis [mm]")#plt.xlim(-10,10) plt.title("Curvature of B-field") plt.legend(loc='lower right') plt.show() plt.figure(200,figsize=(15,13)) plt.rcParams.update({'font.size': 15}) plt.suptitle("Helmholtz coil field B_z along z-axis") #Field plot ########################## plt.subplot(2,1,1) plt.plot(z,B_z,linestyle = "solid", label = r"$B_{ref}$, reference, optimal HH-configuration d = 44 mm, R = 44 mm") plt.plot(z,B_z_2,linestyle = "solid", label = r"$B_{z,1}$, d = 54 mm, R = 48.8 mm, I = 5 A, 4 x 4") plt.plot(z,B_z_3,linestyle = "solid", label = r"$B_{z,2}$, d = 54 mm, R = 37 mm, I = -0.7 A, 4 x 4") plt.plot(z,B_tot,linestyle = "solid", label = r"$B_{z,1} + B_{z,2}$") #plt.xlim(-0.01,0.01) plt.title("B-field" ) plt.ylabel(r"$B_z$ [G]") plt.xlabel("z-axis [mm]") plt.legend()#bbox_to_anchor=(1.05, 1), loc='upper left') plt.subplot(2,1,2) plt.plot(z,B_z_curvature,linestyle = "solid", label = r"$\nabla_z^2 B_{ref}$, d = 44 mm, R = 44 mm") plt.plot(z,B_z_curvature_2,linestyle = "solid", label = r"$\nabla_z^2 B_{z,1}$, d = 54 mm, R = 48.8 mm, I = 5 A") plt.plot(z,B_z_curv_3,linestyle = "solid", label = r"$\nabla_z^2 B_{z,2}$, d = 54 mm, R = 37 mm, I = -0.7 A") plt.plot(z,B_tot_curv,linestyle = "solid", label = r"$\nabla_z^2 B_{z,1} + B_{z,2}$") plt.ylabel(r"$\nabla_z^2 B_z [G/cm^2]$") plt.xlabel("z-axis [mm]")#plt.xlim(-10,10) plt.title("Curvature of B-field") plt.legend()#bbox_to_anchor=(1.05, 1), loc='upper left') #plt.savefig("output/first_compensation_idea.png") plt.show() plt.close() """ AHH ############################################################################ ############################################################################### ############################################################################### """