# -*- coding: utf-8 -*- """ Created on Mon Aug 16 11:49:41 2021 @author: Joschka """ import matplotlib.pyplot as plt import numpy as np from src import B_field_calculation as bf from src import coil_class as BC from IPython import get_ipython get_ipython().run_line_magic('matplotlib', 'qt') #get_ipython().run_line_magic('matplotlib', 'inline') #set up axis x = np.linspace(-50, 50, 101) z = np.linspace(-50, 50, 101) ################# My simulation ######################### I = 5 HH = 1 d_coils = 44 R_mid = 44 layers = 6 windings = 2 wire_width = 1.7 wire_height = 2.6 HH_Coil_44 = BC.BCoil(HH, d_coils ,R_mid, layers, windings, wire_width, wire_height) d_coils_2 = 55.2 HH_Coil_54 = BC.BCoil(HH, d_coils_2 ,R_mid, layers, windings, wire_width, wire_height) #HH_Coil_44.B_quick_plot(I,x,z) #HH_Coil_44.Bz_plot_HH_comp(HH_Coil_54,I,x,z) B_z, B_x = HH_Coil_44.B_field(I, x, z) B_z_2, B_x_2 = HH_Coil_54.B_field(I, x, z) B_z_curvature = np.gradient(np.gradient(B_z,z),z)*1e2 B_z_curvature_2 = np.gradient(np.gradient(B_z_2,z),z)*1e2 plt.figure(100,figsize=(13,10)) #plt.rcParams.update({'font.size': 15}) plt.suptitle("Helmholtz coil field Bz along z-axis") #Field plot ########################## plt.subplot(2,1,1) plt.plot(z,B_z,linestyle = "solid", label = r"$Bz$, d = 44 mm") plt.plot(z,B_z_2,linestyle = "solid", label = r"$B_{z,2}$, d = 55.2 mm") #plt.xlim(-0.01,0.01) plt.title("B-field" ) plt.ylabel(r"$Bz$ [G]") plt.xlabel("z-axis [mm]") plt.legend() plt.subplot(2,1,2) plt.plot(z,B_z_curvature,linestyle = "solid", label = r"$\nabla_z^2 Bz$, d = 44 mm") plt.plot(z,B_z_curvature_2,linestyle = "solid", label = r"$\nabla_z^2 B_{z,2}, d = 55.2 mm$") plt.ylabel(r"$\nabla_z^2 Bz [G/cm^2]$") plt.xlabel("z-axis [mm]")#plt.xlim(-10,10) plt.title("Curvature of B-field") plt.legend(loc='lower right') plt.show()