Plots + field measurement

This commit is contained in:
Joschka Schöner 2022-09-05 16:09:56 +02:00
parent 53e2071ab2
commit d9787c2e15
9 changed files with 456 additions and 71 deletions

View File

@ -1,64 +0,0 @@
# %%
import matplotlib.pyplot as plt
import RigolWFM.wfm as rigol
# %%
hhpion = 'C:/Users/Joschka/Desktop/Coil_Data/New/hhpion.wfm'
hhpioff = 'C:/Users/Joschka/Desktop/Coil_Data/New/hhpioff.wfm'
hhon = 'C:/Users/Joschka/Desktop/Coil_Data/New/hhon.wfm'
hhoff = 'C:/Users/Joschka/Desktop/Coil_Data/New/hhoff.wfm'
scope = 'DS1104Z-S'
# %%
hhpion = rigol.Wfm.from_file(hhpion, scope)
hhpion.plot()
plt.show()
# %%
hhpioff = rigol.Wfm.from_file(hhpioff, scope)
hhpioff.plot()
plt.show()
# %%
hhoff = rigol.Wfm.from_file(hhoff, scope)
hhoff.plot()
plt.show()
# %%
hhon = rigol.Wfm.from_file(hhon, scope)
hhon.plot()
plt.show()
# %%
print(w.channels[0].times)
print(w.channels[0].volts)
# %%
ahhpion = 'C:/Users/Joschka/Desktop/Coil_Data/New/ahhpion.wfm'
ahhpioff = 'C:/Users/Joschka/Desktop/Coil_Data/New/ahhpioff.wfm'
ahhon = 'C:/Users/Joschka/Desktop/Coil_Data/New/ahhon.wfm'
ahhoff = 'C:/Users/Joschka/Desktop/Coil_Data/New/ahhoff.wfm'
scope = 'DS1104Z-S'
# %%
ahhpion = rigol.Wfm.from_file(ahhpion, scope)
ahhpion.plot()
plt.show()
# %%
ahhpioff = rigol.Wfm.from_file(ahhpioff, scope)
ahhpioff.plot()
plt.show()
# %%
ahhoff = rigol.Wfm.from_file(ahhoff, scope)
ahhoff.plot()
plt.show()
# %%
ahhon = rigol.Wfm.from_file(ahhon, scope)
ahhon.plot()
plt.show()

116
Data_Coils/Frequ_resp.py Normal file
View File

@ -0,0 +1,116 @@
# %%
import matplotlib.pyplot as plt
import RigolWFM.wfm as rigol
import numpy as np
import matplotlib as mpl
import scipy.optimize
# %%
# Data import
f = np.array(
[1, 1.83, 3.36, 6.16, 11.3, 20.7, 37.9, 69.5, 127, 234, 428, 785, 1440, 2640, 4830, 8860, 16200, 29800, 54600])
A_HH = np.array(
[1.13, 1.13, 1.13, 1.13, 1.13, 1.14, 1.13, 1.11, 1.03, 0.881, 0.708, 0.504, 0.334, 0.198, 0.119, 0.069, 0.046,
0.028, 0.024])
dA_HH = np.array(
[0.006, 0.002, 0.001, 0.002, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.002, 0.001, 0.004, 0.001, 0.001,
0.001, 0.001, 0.001])
ph_HH = np.array(
[0.8, -0.8, -1.2, -0.8, 1.5, 3.7, 7.9, 11.8, 20.6, 32.0, 44.6, 54.8, 64.3, 74.0, 78.6, 82.8, 85.3, 87.4, 93.7])
dph_HH = np.array(
[1.5, 1.5, 0.5, 1.2, 4.1, 0.001, 1.3, 0.001, 0.4, 0.001, 0.080, 0, 0.23, 0.7, 0.05, 1.6, 1.5, 2.5, 2.8])
A_AHH = np.array(
[1.14, 1.14, 1.14, 1.14, 1.15, 1.15, 1.13, 1.09, 0.966, 0.737, 0.539, 0.359, 0.216, 0.130, 0.0767, 0.0475])
dA_AHH = np.array(
[0.007, 0.005, 0.002, 0.002, 0.002, 0.002, 0.001, 0.001, 0.004, 0.012, 0.001, 0.001, 0.003, 0.001, 0.0004, 0.0004])
ph_AHH = np.array([0.6, -0.3, 0.5, 0.3, 2.5, 4.3, 8.8, 17.2, 30.3, 45.3, 54.2, 64.4, 72.6, 77.24, 79.4, 80.14])
dph_AHH = np.array([3.0, 2.0, 0.4, 1.2, 1.0, 0.7, 1.2, 1.2, 0.5, 2.6, 0.9, 1.4, 1.2, 1.5, 2.1, 1.2])
# %%
my_colors = {'light_green': '#97e144',
'orange': '#FF914D',
'light_grey': '#545454',
'pastel_blue': '#1b64d1',
'light_blue': '#71C8F4',
'purple': '#7c588c'}
mpl.rcParams.update({'font.size': 11, 'axes.linewidth': 1, 'lines.linewidth': 2, 'text.usetex': False, 'font.family': 'arial'})
mpl.rcParams['xtick.direction'] = 'in'
mpl.rcParams['ytick.direction'] = 'in'
mpl.rcParams['xtick.top'] = True
mpl.rcParams['ytick.right'] = True
# %% Fit func
def I_fit(f,U,tau):
omega = 2* np.pi *f
return U/np.sqrt(tau**2 + omega**2)
# %% fit HH
fit_bound = (0,len(A_HH))
p0 = [1,2.2e3]
popt_hh, pcov_hh = scipy.optimize.curve_fit(I_fit, f, A_HH, p0=p0, sigma=dA_HH, absolute_sigma=False)
print("U0, tau, t0")
print(popt_hh)
# %% fit AHH
fit_bound = (0,len(A_HH))
p0 = [1,2.2e3]
popt_ahh, pcov_ahh = scipy.optimize.curve_fit(I_fit, f[0:len(A_AHH)], A_AHH, p0=p0)
print("U0, tau, t0")
print(popt_hh)
# %% Scaling factor
scale = 0.3/I_fit(1, *popt_hh)
# %%
x=np.linspace(0,50000,10000)
fig, ax = plt.subplots(figsize=(5.4, 4), dpi=400)
ax.errorbar(f, scale*A_HH, yerr=scale*dA_HH, elinewidth=2, capsize=5, linewidth=0, label='Data HH', zorder=4, marker='.',color='C0')
ax.plot(x, scale*I_fit(x, *popt_hh),label=f'fit HH, $\\tau$ = 2255(110) 1/s',color='C8')
ax.errorbar(f[0:len(A_AHH)], scale*A_AHH, yerr=scale*dA_AHH, elinewidth=2, capsize=5, linewidth=0, label='Data AHH', zorder=3, marker='^',color='C1')
ax.plot(x, scale*I_fit(x, *popt_ahh),label=f'fit AHH, $\\tau$ = 1416(56) 1/s', color='C4')
ax.hlines(scale*I_fit(1, *popt_hh)/np.sqrt(2),0, 1e5, color='C7', linestyle=(0,(2.5,3)), label='3dB point \nHH: f = 359 Hz, AHH: 225 Hz ')
ax.grid(alpha=0.6)
ax.set_xscale('log')
ax.set_yscale('log')
ax.set_xlim(0, 1e5)
ax.set_ylabel(r'current amplitude ($\rm A_{pp}$)')
ax.set_xlabel('frequency f (Hz)')
handles, labels = ax.get_legend_handles_labels()
ax.legend(handles=[handles[3], handles[4], handles[0], handles[1], handles[2]])
fig.tight_layout()
fig.savefig('C:/Users/Joschka/Desktop/Master_Thesis/Figures/Coil_measurements/Final/freq_resp.png')
fig.savefig('C:/Users/Joschka/Desktop/Master_Thesis/Figures/Coil_measurements/Final_low/freq_resp.png', dpi=96)
plt.show()
# %% Find 3dB point
x=np.linspace(0,1000,10000)
for i in range(0,10000):
if I_fit(x[i], *popt_hh) < (I_fit(1, *popt_hh)/np.sqrt(2)):
print(f"Cutoff HH: {x[i]} Hz")
break
for i in range(0, 10000):
if I_fit(x[i], *popt_ahh) < (I_fit(1, *popt_ahh) / np.sqrt(2)):
print(f"Cutoff AHH: {x[i]} Hz")
break
# %%
fig, ax = plt.subplots(figsize=(5.4, 4),dpi=400)
ax.errorbar(f, ph_HH, yerr=dph_HH, label='Data HH')
ax.grid(alpha=0.6, which='minor')
ax.set_xscale('log')
#ax.set_yscale('log')
plt.show()

View File

@ -0,0 +1,59 @@
# %%
import matplotlib.pyplot as plt
import numpy as np
import matplotlib as mpl
from matplotlib.ticker import AutoMinorLocator
# %%
# Import data without water cooling
I = np.array([0, 0.5, 1, 1.25, 1.5, 1.75, 2,2.25])
HH = np.array([25, 26, 30.9, 36.6, 39.8, 46.8, 53.9, 62.3])
AHH = ([25,26.5,35.2, 42.7, 52.2])
# %%
# Data with water cooling
I_w = np.arange(0,5.25,0.5)
I_w = np.append(I_w, 5.25)
HH_w = np.array([17.8, 18.2, 18.9, 20, 21.8, 24.3, 27.3, 31.4, 36.8, 42.5, 49.3, 56.2])
AHH_w = np.array([17.2, 17.7,19.1, 21.3, 24.7, 29.3, 35.7, 43.9, 55.6])
# %%
my_colors = {'light_green': '#97e144',
'orange': '#FF914D',
'light_grey': '#545454',
'pastel_blue': '#1b64d1',
'light_blue': '#71C8F4',
'purple': '#7c588c'}
mpl.rcParams.update({'font.size': 11, 'axes.linewidth': 1, 'lines.linewidth': 2, 'text.usetex': False, 'font.family': 'arial'})
mpl.rcParams['xtick.direction'] = 'in'
mpl.rcParams['ytick.direction'] = 'in'
mpl.rcParams['xtick.top'] = True
mpl.rcParams['ytick.right'] = True
# %%
fig, ax = plt.subplots(figsize=(5, 3.6),dpi=400)
ax.scatter(I, HH, label='HH, no water')
ax.scatter(I[0:len(AHH)], AHH, label='AHH, no water',marker='v')
ax.scatter(I_w, HH_w, label='HH, with water',marker = 's')
ax.scatter(I_w[0:len(AHH_w)], AHH_w, label='AHH, with water', marker='d')
ax.legend(fontsize=10.5)
ax.grid(alpha = 0.2)
ax.set_xlim(-0.3, 5.7)
ax.set_ylim(11, 65)
ax.set_ylabel('temperature coil T (°C)')
ax.set_xlabel('current I (A)')
ax.xaxis.set_minor_locator(AutoMinorLocator(2))
ax.yaxis.set_minor_locator(AutoMinorLocator(2))
fig.tight_layout()
plt.savefig('C:/Users/Joschka/Desktop/Master_Thesis/Figures/Coil_measurements/Final/heating.png')
plt.savefig('C:/Users/Joschka/Desktop/Master_Thesis/Figures/Coil_measurements/Final_low/heating.png',dpi=96)
plt.show()

View File

@ -0,0 +1,183 @@
# %%
import matplotlib.pyplot as plt
import RigolWFM.wfm as rigol
import numpy as np
import matplotlib as mpl
# %%
import scipy.optimize
my_colors = {'light_green': '#97e144',
'orange': '#FF914D',
'light_grey': '#545454',
'pastel_blue': '#1b64d1',
'light_blue': '#71C8F4',
'purple': '#7c588c'}
mpl.rcParams.update({'font.size': 11, 'axes.linewidth': 1, 'lines.linewidth': 2, 'text.usetex': False, 'font.family': 'arial'})
mpl.rcParams['xtick.direction'] = 'in'
mpl.rcParams['ytick.direction'] = 'in'
mpl.rcParams['xtick.top'] = True
mpl.rcParams['ytick.right'] = True
# %%
hhpion.channels[1].volts
# %%
scope = 'DS1104Z-S'
hhpion = rigol.Wfm.from_file('C:/Users/Joschka/Desktop/Coil_Data/New/hhpion.wfm', scope)
hhpioff = rigol.Wfm.from_file('C:/Users/Joschka/Desktop/Coil_Data/New/hhpioff.wfm', scope)
hhon = rigol.Wfm.from_file('C:/Users/Joschka/Desktop/Coil_Data/New/hhon.wfm', scope)
hhoff = rigol.Wfm.from_file('C:/Users/Joschka/Desktop/Coil_Data/New/hhoff.wfm', scope)
ahhpion = rigol.Wfm.from_file('C:/Users/Joschka/Desktop/Coil_Data/New/ahhpion.wfm', scope)
ahhpioff = rigol.Wfm.from_file('C:/Users/Joschka/Desktop/Coil_Data/New/ahhpioff.wfm', scope)
ahhoff = rigol.Wfm.from_file('C:/Users/Joschka/Desktop/Coil_Data/New/ahhoff.wfm', scope)
ahhon = rigol.Wfm.from_file('C:/Users/Joschka/Desktop/Coil_Data/New/ahhon.wfm', scope)
# %%
print(hhon.channels[1])
# %%
def I(V):
return (V/1.2093 -2.47e-3) * 1.21/1.276
print(I(1.21))
print(1/0.88)
def I_exp(t, I_0, tau, t0):
return I_0 *(1-np.exp(-tau *(t-t0)))
def I_pi(t, tau, t0=0):
return 30/3.2 * (1 - np.exp(-tau * (t - t0)))
# %%
x = np.linspace(0,80e-6,1000)
fig, ax = plt.subplots(figsize=(5, 3.6), dpi=400)
ax.plot(1e6* hhpion.channels[1].times, I(hhpion.channels[1].volts), label='HH on')
ax.plot(1e6 *ahhpion.channels[1].times, I(ahhpion.channels[1].volts),label='AHH on')
# ax.plot(1e6 *x, I_pi(x, popt_hhon[1]))
ax.plot(1e6* hhpioff.channels[1].times, I(hhpioff.channels[1].volts), label='HH off')
ax.plot(1e6 *ahhpioff.channels[1].times, I(ahhpioff.channels[1].volts), label='AHH off')
ax.grid(alpha=0.5)
ax.set_xlabel('time (μs)')
ax.set_ylabel('current I (A)')
ax.set_xlim(-50, 300)
ax.legend()
fig.tight_layout()
plt.savefig('C:/Users/Joschka/Desktop/Master_Thesis/Figures/Coil_measurements/Final/time_resp_pi.png', dpi=400)
plt.savefig('C:/Users/Joschka/Desktop/Master_Thesis/Figures/Coil_measurements/Final_low/time_resp_pi.png',dpi=96)
plt.show()
# %%
# Fitting
# 0 at 745128
fitx = np.array(hhon.channels[1].times)
fity = np.array(I(hhon.channels[1].volts))
dfity = np.array(hhon.channels[1].volts)
dfity = 0.1*200e-3 + 2e-3 + 0.001 * dfity
dfity = I(dfity)
fit_bound = (745128,len(fitx))
p0 = [1,2.2e3,0]
popt_hhon, pcov_hhon = scipy.optimize.curve_fit(I_exp, fitx[fit_bound[0]:fit_bound[1]], fity[fit_bound[0]:fit_bound[1]],
p0=p0, sigma = dfity[fit_bound[0]:fit_bound[1]], absolute_sigma=True)
print("I0, tau, t0")
print(popt_hhon)
# %%
# Fitting
# 0 at 510128
fitx = np.array(ahhon.channels[1].times)
fity = np.array(I(ahhon.channels[1].volts))
fit_bound = (510128,len(fitx))
p0 = [1,2.2e3,0]
popt_ahhon, pcov_ahhon = scipy.optimize.curve_fit(I_exp, fitx[fit_bound[0]:fit_bound[1]], fity[fit_bound[0]:fit_bound[1]], p0=p0)
print("I0, tau, t0")
print(popt_ahhon)
# %%
for i in range(0,len(fitx)):
if fitx[i]>0:
print(i)
break
# %%
x = np.linspace(0, 0.01, 1000)
fig, ax = plt.subplots(figsize=(5, 3.6))
ax.scatter(1e3* fitx,fity, label='HH on', linewidth=0.01)
ax.legend()
plt.show()
# %%
x = np.linspace(0, 0.01, 1000)
fig, ax = plt.subplots(figsize=(5, 3.6),dpi=400)
ax.plot(1e3* hhon.channels[1].times, I(hhon.channels[1].volts), label='HH on', color='C0')
ax.plot(1e3 *ahhon.channels[1].times, I(ahhon.channels[1].volts),label='AHH on', color='C1')
ax.plot(1e3*x, I_exp(x, *popt_hhon))
ax.plot(1e3* hhoff.channels[1].times, I(hhoff.channels[1].volts), label='HH off', color='C2',zorder=0)
ax.plot(1e3 *ahhoff.channels[1].times, I(ahhoff.channels[1].volts), label='AHH off', color='C3',zorder=1)
ax.plot(1e3*x, I_exp(x, *popt_hhon), color = 'C8', linestyle=(0,(2,)),
label=f'fit HH on, $ \\tau$ = {popt_hhon[1]:.0f} 1/s', zorder=3)
ax.plot(1e3*x, I_exp(x, *popt_ahhon), color = 'C4', linestyle=(0,(2,)),
label=f'fit AHH on, $\\tau$ = {popt_ahhon[1]:.0f} 1/s')
ax.grid(alpha=0.5)
ax.set_xlabel('time (ms)')
ax.set_ylabel('current I (A)')
ax.legend(loc=5)
fig.tight_layout()
plt.savefig('C:/Users/Joschka/Desktop/Master_Thesis/Figures/Coil_measurements/Final/time_resp.png')
plt.savefig('C:/Users/Joschka/Desktop/Master_Thesis/Figures/Coil_measurements/Final_low/time_resp.png', dpi=96)
plt.show()
# %%
# Resistance HH Calculation
I = 1
U = 3.32
dI = 1e-3 + 0.001*I
dU = np.sqrt(5e-3**2 + (0.0005*U)**2 + (0.005*U)**2)
print(dU)
#dU = 0.05
R =U/I
dR = R* np.sqrt((dI/I)**2 + (dU/U)**2)
print(f"R = {R:.3f} +/- {dR:.3f} Ω")
L = R/popt_hhon[1]
dL=dR/popt_hhon[1]
print(f"L = {L:.6f} +/-{dL:.6f} Ω")
# %%
# Resistance AHH Calculation
I = 1
U = 6.64
dI = np.sqrt(1e-3**2 + (0.001*I)**2)
dU = np.sqrt(5e-3**2 + (0.0005*U)**2 + (0.005*U)**2)
print(dU)
R =U/I
dR = R* np.sqrt((dI/I)**2 + (dU/U)**2)
print(f"R = {R:.3f} +/- {dR:.3f} Ω")
L = R/popt_ahhon[1]
dL=dR/popt_ahhon[1]
print(f"L = {L:.5f} +/-{dL:.5f} Ω")
# %%

View File

@ -24,6 +24,7 @@ AHH_Coil.set_d_max(77.6)
AHH_Coil.print_info() AHH_Coil.print_info()
R = HH_Coil.resistance(25) R = HH_Coil.resistance(25)
# %% # %%
AHH_Coil.plot_raster() AHH_Coil.plot_raster()
print(AHH_Coil.get_N()) print(AHH_Coil.get_N())
@ -37,7 +38,6 @@ I_2 = 0.92
HH_Coil.cooling(I_2,22.5) HH_Coil.cooling(I_2,22.5)
HH_Coil.max_field(I_2) HH_Coil.max_field(I_2)
# %% # %%
AHH_Coil.B_quick_plot(I)
HH_Coil.print_info() HH_Coil.print_info()
@ -49,8 +49,13 @@ print("All values for pair in series")
print(f"inductivity AHH: {AHH_Coil.induct_perry()*2*1e3} mH" ) print(f"inductivity AHH: {AHH_Coil.induct_perry()*2*1e3} mH" )
print(f"inductivity HH: {HH_Coil.induct_perry() * 2*1e3} mH" ) print(f"inductivity HH: {HH_Coil.induct_perry() * 2*1e3} mH" )
print(f"resistance AHH: {AHH_Coil.resistance(22.5)*2} Ω") print(f"resistance AHH: {AHH_Coil.resistance(22) *2} Ω")
print(f"resistance HH: {HH_Coil.resistance(22.5)*2} Ω") print(f"resistance HH: {HH_Coil.resistance(22)*2} Ω")
print(f"resistance HH: {HH_Coil.resistance(2)*2} Ω")
print(f"rel change: {(HH_Coil.resistance(22)-HH_Coil.resistance(23))/HH_Coil.resistance(22)} Ω")
print(f"res of 4 m copper wire: {BC.BCoil.resistivity_copper(22)*5*0.5**2 *np.pi *1e6} Ω")
# %% # %%
I = 1 I = 1

View File

@ -0,0 +1,34 @@
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
#get data from txt, usecols=0 is B_x, 1 is B_y, 2 is B_z
B=np.genfromtxt('Data.txt', usecols=1, unpack=True)
#just determining calibrating parameters from several tries
ratio=np.mean([0.49275,0.47778,0.48105,0.51098,0.49541,0.5094,0.4783,0.51914])
dratio=np.std([0.49275,0.47778,0.48105,0.51098,0.49541,0.5094,0.4783,0.51914])
offset=np.mean([7.12939,6.99607,6.8554,6.13588,7.06523,6.78745,3.4305,4.1762])
doffset=np.std([7.12939,6.99607,6.8554,6.13588,7.06523,6.78745,3.4305,4.1762])
print('ratio:',np.round(ratio,3),'+/-',np.round(dratio,3))
print('offset:',np.round(offset,3),'+/-',np.round(doffset,3))
#calibrated new values
B_cal=(-1)*(ratio*B-ratio*offset)
dB_cal=np.sqrt((B*dratio-offset*dratio)**2+(ratio*1.615)**2+(ratio*doffset)**2)
# exemplary plotting and fitting, analyse calibrated values whichever way you want
print(B_cal)
plt.errorbar(x,B_cal,dB-cal)
plt.ylabel('G')
plt.xlabel('mm')
plt.title('Gradient field z-axis 4A AHH, 1A HH')
def linear(x,m,b):
return m*x+b
popt,pcov=curve_fit(linear,x,B_cal,sigma=dB_cal)
plt.plot(x,linear(x,*popt),label='measurement fit')
print('Gradient:',popt[0]*10,'+/-',np.sqrt(pcov[0][0])*10)
plt.show()

View File

@ -0,0 +1,46 @@
import serial
import re
import matplotlib.pyplot as plt
#connect to device, check if correct port
ser =serial.Serial('COM4',19200)
Bx=[]
By=[]
Bz=[]
x=[]
i=0
f=open('Data.txt','w')
fig, axs=plt.subplots(1,3)
#plug in number of measurement points (here 35)
#save all data in a txt sheet
for k in range(0,35):
a=ser.readline()
data=str(a,'utf-8')
points=re.findall(r'-?\d+\.?\d*', data)
Bx_point=float(points[0])
By_point=float(points[1])
Bz_point=float(points[2])
Bx.append(Bx_point)
By.append(By_point)
Bz.append(Bz_point)
x.append(i)
i+=1
print(Bx_point,By_point,Bz_point)
f.write(str(Bx_point)+'\t'+str(By_point)+'\t'+str(Bz_point)+'\n')
f.close()
#plot to get a first look at magnetic field (not calibrated)
axs[0].errorbar(x,Bx,1.615)
axs[0].set_title('Bx')
axs[0].set(ylabel='G')
axs[1].errorbar(x,By,1.615)
axs[1].set_title('By')
axs[1].set(ylabel='G')
axs[2].errorbar(x,Bz,1.615)
axs[2].set_title('Bz')
axs[2].set(ylabel='G')
print(By)
plt.show()

View File

@ -55,7 +55,7 @@ Bx_grad = np.abs(BC.BCoil.grad(Bx, x))
# %% # %%
#HH plots #HH plots
fig, axes = plt.subplots(2, 2, figsize=(5.8, 4), gridspec_kw={'height_ratios':[12,5]},dpi=600) fig, axes = plt.subplots(2, 2, figsize=(5.8, 4), gridspec_kw={'height_ratios':[12,5]},dpi=400)
#fig.tight_layout() #fig.tight_layout()
lim1 = 55 lim1 = 55
@ -116,7 +116,9 @@ for i in [0,1]:
axes[i, 0].yaxis.set_label_coords(-0.19, 0.5) axes[i, 0].yaxis.set_label_coords(-0.19, 0.5)
axes[i, 1].yaxis.set_label_coords(-0.17, 0.5) axes[i, 1].yaxis.set_label_coords(-0.17, 0.5)
fig.tight_layout() fig.tight_layout()
fig.savefig('Thesis_Plots/Coil_Design/Out/HH_field.png')
plt.savefig('C:/Users/Joschka/Desktop/Master_Thesis/Figures/Coil_design/Final_400/HH_field.png')
plt.savefig('C:/Users/Joschka/Desktop/Master_Thesis/Figures/Coil_design/Final_low/HH_field.png',dpi=96)
plt.show() plt.show()
# %% # %%
@ -196,5 +198,7 @@ for i in [0,1]:
axes[i,0].yaxis.set_label_coords(-0.15,0.5) axes[i,0].yaxis.set_label_coords(-0.15,0.5)
axes[i, 1].yaxis.set_label_coords(-0.08, 0.5) axes[i, 1].yaxis.set_label_coords(-0.08, 0.5)
fig.tight_layout() fig.tight_layout()
fig.savefig('Thesis_Plots/Coil_Design/Out/AHH_field.png') plt.savefig('C:/Users/Joschka/Desktop/Master_Thesis/Figures/Coil_design/Final_400/AHH_field.png')
plt.savefig('C:/Users/Joschka/Desktop/Master_Thesis/Figures/Coil_design/Final_low/AHH_field.png',dpi=96)
plt.show() plt.show()

View File

@ -61,5 +61,7 @@ ext = 0.2
ax.set_xlim(1e3 * HH_Coil.get_R_inner() - ext- 0.2, 1e3 * (HH_Coil.get_R_inner()+HH_Coil.get_coil_height() )+ ext) ax.set_xlim(1e3 * HH_Coil.get_R_inner() - ext- 0.2, 1e3 * (HH_Coil.get_R_inner()+HH_Coil.get_coil_height() )+ ext)
ax.set_ylim(1e3 * HH_Coil.get_zmin() - ext, 1e3 * HH_Coil.get_zmax() + ext) ax.set_ylim(1e3 * HH_Coil.get_zmin() - ext, 1e3 * HH_Coil.get_zmax() + ext)
plt.savefig('C:/Users/Joschka/Desktop/Magnetic_field_coils_project/Thesis_Plots/Coil_Design/Out/winding_scheme_2.png') plt.savefig('C:/Users/Joschka/Desktop/Master_Thesis/Figures/Coil_design/Final_400/final_winding_scheme.png',dpi=400)
plt.savefig('C:/Users/Joschka/Desktop/Master_Thesis/Figures/Coil_design/Final_low/final_winding_scheme.png',dpi=96)
plt.show() plt.show()