Added calculation for intermediate pair of coils

This commit is contained in:
Joschka Schöner 2022-04-01 16:42:07 +02:00
parent 7d4a895dc4
commit 37688201fe
4 changed files with 112 additions and 1 deletions

View File

@ -0,0 +1,87 @@
import matplotlib.pyplot as plt
import numpy as np
import matplotlib
# matplotlib.use('Qt5Agg')
from src import coil_class as BC
scale = 10
lim = 20
nr_points = (2 * lim) * scale + 1
x = np.linspace(-lim, lim, nr_points)
z = np.linspace(-lim, lim, nr_points)
def mu_it(x_pos):
it = nr_points // 2 + x_pos
return it
scale = 10
# I_current = 0.94
HH_Coil = BC.BCoil(HH=1, distance=79.968, radius=80.228, layers=8, windings=8, wire_height=0.5,
wire_width=0.5, insulation_thickness=0.046 / 2, is_round=True,
winding_scheme=2)
AHH_Coil = BC.BCoil(HH=-1, distance=100.336, radius=85.016, layers=10, windings=10, wire_height=1.18,
wire_width=1.18, insulation_thickness=0.06, is_round=True,
winding_scheme=2)
HH_Coil.print_basic_info()
AHH_Coil.print_basic_info()
I = 0.75
#HH_Coil.B_quick_plot(I)
#HH_Coil.B_curv_quick_plot(I)
# Power
#HH_Coil.cooling(I, 23)
#AHH_Coil.cooling(I, 23)
print(f"resistance = {HH_Coil.resistance(23)} Ohm")
# rough Field
I_HH = 1
HH_Coil.max_field(I_HH)
I_AHH = 3.6
AHH_Coil.max_gradient(I_AHH)
# Quick plot
HH_Coil.B_quick_plot(I_HH)
HH_Coil.B_curv_quick_plot(I_HH)
AHH_Coil.B_quick_plot(I_AHH)
AHH_Coil.B_grad_quick_plot(I_AHH, nr_points = 200)
HH_Coil.plot_3d(I_HH, 50, 50)
AHH_Coil.plot_3d(I_AHH, 50, 50)
# Field calculation
Bz_HH, Bx_HH = HH_Coil.B_field(I_HH, x, z)
B_tot_z, B_tot_x = HH_Coil.B_tot_along_axis(I_HH, x, z)
Bz_grad = BC.BCoil.grad(Bz_HH, z)
# Position 2
# AHH_Coil.set_R_inner(62)
# AHH_Coil.set_d_min(116)
#
# print(f"wire length = {AHH_Coil.get_wire_length()} m")
# AHH_Coil.print_info()
I = 1
# print(f"current I = {I} A")
# AHH_Coil.B_quick_plot(I)
# AHH_Coil.B_grad_quick_plot(I, nr_points = 200)
# AHH_Coil.B_curv_quick_plot(I, nr_points = scale)
# HH_Coil.print_info()
# AHH_Coil.print_info()

View File

@ -0,0 +1,23 @@
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
from src import coil_class as BC
RF_Coil = BC.BCoil(HH = 1, distance = 54, radius = 38.4, layers = 3, windings = 1, wire_height = 0.5,
wire_width = 0.5, insulation_thickness = (0.546-0.5)/2, is_round = True,
winding_scheme= 2)
R = RF_Coil.resistance(22.5)*2
# R = 10
L = RF_Coil.induct_perry()
L = 0.26e-6
f = R/(2*np.pi* L)
print(R)
print(L)
print(f)

View File

@ -13,6 +13,7 @@ Me = 9
Mg = 8 Mg = 8
mu_eff = (ge*Me- gg*Mg) * cs.mu_B mu_eff = (ge*Me- gg*Mg) * cs.mu_B
#print(mu_eff)
detuning = 2 * np.pi * 2.4e6 #Hz detuning = 2 * np.pi * 2.4e6 #Hz
dG = 2.26e-4 #T/cm dG = 2.26e-4 #T/cm

View File

@ -624,7 +624,7 @@ class BCoil:
if B_tot[zz, xx] > 15: if B_tot[zz, xx] > 15:
B[zz, xx, :] /= B_tot[zz, xx] / 15 B[zz, xx, :] /= B_tot[zz, xx] / 15
plt.figure(33) plt.figure()
plt.quiver(x_m, z_m, B[:, :, 0], B[:, :, 1]) plt.quiver(x_m, z_m, B[:, :, 0], B[:, :, 1])
plt.xlabel("x-axis [mm]") plt.xlabel("x-axis [mm]")
plt.ylabel("z-axis [mm]") plt.ylabel("z-axis [mm]")