This commit is contained in:
schoener 2021-10-01 14:25:09 +02:00
commit 1b7cd031ee
4 changed files with 642 additions and 0 deletions

151
src/B_field_calculation.py Normal file
View File

@ -0,0 +1,151 @@
# -*- coding: utf-8 -*-
"""
Created on Mon Aug 16 11:51:36 2021
@author: Joschka
"""
import numpy as np
from scipy import special as sp
from src import physical_constants as cs
#HH = +1 --> Helmholtz configuration, HH = -1 --> Anti Helmholtz configuration
def B_field_ideal(N_windings,I_current,R_radius,d_distance,HH,z_arg):
""" Calculate B-field for ideal point like wires with R_radius and d_distance
HH = +1 --> Helmholtz configuration, HH = -1 --> Anti Helmholtz configuration
"""
B = cs.mu_0*N_windings*I_current/2 * R_radius**2 * (1/(R_radius**2+(z_arg-d_distance/2)**2)**(3/2) +HH* 1/(R_radius**2+(z_arg+d_distance/2)**2)**(3/2))
B *= 1e4 #conversion Gauss
return B
#Argument for elliptic integrals
def k_sq(R_loop, z_loc, r, z):
""" Argument for elliptic integrals"""
return (4*R_loop*r)/((R_loop+r)**2 + (z-z_loc)**2)
def B_z_loop(I_current, R_loop, z_loc, r, z):
"""calculate z-component of B-field at position r and z for each individual loop"""
B_z = 2e-7*I_current * 1/( (R_loop+r)**2 + (z-z_loc)**2 )**(1/2) *(sp.ellipk(k_sq(R_loop,z_loc,r,z))+ sp.ellipe(k_sq(R_loop,z_loc,r,z))*(R_loop**2 - r**2 - (z-z_loc)**2)/((R_loop-r)**2 + (z-z_loc)**2))
B_z *= 1e4 #conversion to gauss
return B_z
def B_r_loop(I_current, R_loop, z_loc, r, z):
"""calculate r-component of B-field at position r and z for each individual loop"""
B_r = 2e-7*I_current/r * (z-z_loc)/( (R_loop+r)**2 + (z-z_loc)**2 )**(1/2) *(-sp.ellipk(k_sq(R_loop,z_loc,r,z))+ sp.ellipe(k_sq(R_loop,z_loc,r,z))*(R_loop**2 + r**2 + (z-z_loc)**2)/((R_loop-r)**2 + (z-z_loc)**2))
B_r *= 1e4 #conversion to gauss
return B_r
def B_multiple(I_current, HH, R_inner, distance_coils, layers, windings, wire_width, wire_height, x, z):
"""Returns B_z along z-axis and B_r along r-axis
HH = +1 --> Helmholtz configuration, HH = -1 --> Anti Helmholtz configuration"""
z_start = (distance_coils/2 - windings * wire_height/2 + wire_height/2)*1e-3
R_start = (R_inner + wire_width/2 )*1e-3
if x[0] <=0:
x_neg = np.abs([el for el in x if el<0])
x_pos = np.array([el for el in x if el>0])
x_zero = np.array([el for el in x if el == 0])
B_z = np.zeros(len(z))
B_x_pos = np.zeros(len(x_pos))
B_x_neg = np.zeros(len(x_neg))
B_x_zero = x_zero #If there is a zero in the x-array it is assured that the x component of the field at this point is zero
for xx in range(0,layers):
for zz in range(0,windings):
z_pos = z_start + zz * wire_height*1e-3
R_pos = R_start + xx * wire_width*1e-3
B_z += B_z_loop(I_current,R_pos,z_pos,0,z) + B_z_loop(HH*I_current,R_pos,-z_pos,0,z)
B_x_pos += B_r_loop(I_current,R_pos,z_pos,x_pos,0) + B_r_loop(HH*I_current,R_pos,-z_pos,x_pos,0)
B_x_neg += B_r_loop(I_current,R_pos,z_pos,x_pos,0) + B_r_loop(HH*I_current,R_pos,-z_pos,x_pos,0)
B_x_neg *=-1 #B_x_neg is pointing in opposite x_direction
B_x = np.concatenate((B_x_neg,B_x_zero,B_x_pos))
return B_z,B_x
def B_multiple_raster(I_current, HH, R_inner, distance_coils, layers, windings, wire_width, wire_height, x, z):
"""Returns B_z along z-axis and B_r along r-axis
HH = +1 --> Helmholtz configuration, HH = -1 --> Anti Helmholtz configuration"""
z_start = (distance_coils/2 - windings * wire_height/2 + wire_height/2)*1e-3
R_start = (R_inner + wire_width/2 )*1e-3
if x[0] <=0:
x_neg = np.abs([el for el in x if el<0])
x_pos = np.array([el for el in x if el>0])
x_zero = np.array([el for el in x if el == 0])
B_z = np.zeros(len(z))
B_x_pos = np.zeros(len(x_pos))
B_x_neg = np.zeros(len(x_neg))
B_x_zero = x_zero #If there is a zero in the x-array it is assured that the x component of the field at this point is zero
#dividing each wire into 10 x 10 raster
raster = 10
I_current /=raster**2
for xx in range(0,layers):
for zz in range(0,windings):
for xx_in in range(0,raster):
for zz_in in range(0,raster):
z_pos = z_start + (zz * wire_height - wire_height/2 + zz_in * wire_height/(raster-1) )*1e-3
R_pos = R_start + (xx * wire_width - wire_width/2 + xx_in * wire_width/(raster-1) )*1e-3
B_z += B_z_loop(I_current,R_pos,z_pos,0,z) + B_z_loop(HH*I_current,R_pos,-z_pos,0,z)
B_x_pos += B_r_loop(I_current,R_pos,z_pos,x_pos,0) + B_r_loop(HH*I_current,R_pos,-z_pos,x_pos,0)
B_x_neg += B_r_loop(I_current,R_pos,z_pos,x_pos,0) + B_r_loop(HH*I_current,R_pos,-z_pos,x_pos,0)
B_x_neg *=-1 #B_x_neg is pointing in opposite x_direction
B_x = np.concatenate((B_x_neg,B_x_zero,B_x_pos))
return B_z,B_x
def B_multiple_raster_test(I_current, HH, R_inner, distance_coils, layers, windings, wire_width, wire_height, x, z):
"""Returns B_z along z-axis and B_r along r-axis
HH = +1 --> Helmholtz configuration, HH = -1 --> Anti Helmholtz configuration"""
z_start = (distance_coils/2 - windings * wire_height/2 + wire_height/2)*1e-3
R_start = (R_inner + wire_width/2 )*1e-3
if x[0] <=0:
x_neg = np.abs([el for el in x if el<0])
x_pos = np.array([el for el in x if el>0])
x_zero = np.array([el for el in x if el == 0])
B_z = np.zeros(len(z))
B_x_pos = np.zeros(len(x_pos))
B_x_neg = np.zeros(len(x_neg))
B_x_zero = x_zero #If there is a zero in the x-array it is assured that the x component of the field at this point is zero
#dividing each wire into 10 x 10 raster
raster = 10
I_current /=raster
for xx in range(0,layers):
for zz in range(0,windings):
for xx_in in range(0,1):
for zz_in in range(0,raster):
z_pos = z_start + (zz * wire_height - wire_height/2 + zz_in * wire_height/(raster-1) )*1e-3
R_pos = R_start + (xx * wire_width)*1e-3
B_z += B_z_loop(I_current,R_pos,z_pos,0,z) + B_z_loop(HH*I_current,R_pos,-z_pos,0,z)
B_x_pos += B_r_loop(I_current,R_pos,z_pos,x_pos,0) + B_r_loop(HH*I_current,R_pos,-z_pos,x_pos,0)
B_x_neg += B_r_loop(I_current,R_pos,z_pos,x_pos,0) + B_r_loop(HH*I_current,R_pos,-z_pos,x_pos,0)
B_x_neg *=-1 #B_x_neg is pointing in opposite x_direction
B_x = np.concatenate((B_x_neg,B_x_zero,B_x_pos))
return B_z,B_x

442
src/coil_class.py Normal file
View File

@ -0,0 +1,442 @@
# -*- coding: utf-8 -*-
"""
Created on Tue Aug 17 15:17:44 2021
@author: Joschka
"""
import numpy as np
import matplotlib.pyplot as plt
from scipy import special as sp
from src import physical_constants as cs
from src import coil_class_add_functions as cf
class BCoil:
def __init__(self, HH, distance, radius, layers, windings, wire_width, wire_height, layers_spacing=0,
windings_spacing=0):
self.HH = HH
self.distance = distance * 1e-3
self.radius = radius * 1e-3
self.layers = layers
self.windings = windings
self.wire_width = wire_width * 1e-3
self.wire_height = wire_height * 1e-3
self.layers_spacing = layers_spacing * 1e-3
self.windings_spacing = windings_spacing * 1e-3
def get_wire_area(self):
return self.wire_width * self.wire_height
def get_N(self):
return self.layers * self.windings
def get_wire_length(self):
return self.get_N() * 2 * self.radius * np.pi
def get_coil_height(self):
return self.windings * self.wire_height + (self.windings - 1) * self.windings_spacing
def get_coil_width(self):
return self.layers * self.wire_width + (self.layers - 1) * self.layers_spacing
def get_zmin(self):
return self.distance / 2 - self.get_coil_height() / 2
def get_zmax(self):
return self.distance / 2 + self.get_coil_height() / 2
def get_radius(self):
return self.radius
def get_R_inner(self):
return self.radius - self.get_coil_width() / 2
def get_R_outer(self):
return self.radius + self.get_coil_width() / 2
def set_R_outer(self, R_outer):
R_outer *= 1e-3
self.radius = R_outer - self.get_coil_width() / 2
def set_R_inner(self, R_inner):
R_inner *= 1e-3
self.radius = R_inner + self.get_coil_width() / 2
def set_d_min(self, d_min):
d_min *= 1e-3
self.distance = d_min + self.get_coil_height()
def set_d_max(self, d_max):
d_max *= 1e-3
self.distance = d_max - self.get_coil_height()
def print_info(self):
print(" ")
# print(f"{self.get_zmin()}")
# print(self.__name__)
print(
f"HH = {self.HH}, Distance = {self.distance * 1e3} mm, z_min = {self.get_zmin() * 1e3} mm, z_max = {self.get_zmax() * 1e3} mm")
print(
f"Radius = {self.radius * 1e3} mm, Radius_inner = {self.get_R_inner() * 1e3} mm, Radius_outer = {self.get_R_outer() * 1e3:.2f} mm")
print(
f"layers = {self.layers}, windings = {self.windings}, wire_width = {self.wire_width * 1e3}, wire_height = {self.wire_height * 1e3} mm ")
print(" ")
def print_basic_info(self):
print(
f"HH = {self.HH}, Distance = {self.distance * 1e3} mm, Radius = {self.radius * 1e3} mm,layers = {self.layers}, windings = {self.windings}")
def B_field_ideal_z(self, I_current, z_arg):
"""
Calculate B-field for ideal point like wires with R_radius and d_distance
HH = +1 --> Helmholtz configuration, HH = -1 --> Anti Helmholtz configuration
z_arg in mm
"""
z_SI = z_arg * 1e-3
N_windings = self.layers * self.windings
B = cs.mu_0 * N_windings * I_current / 2 * self.radius ** 2 * (
1 / (self.radius ** 2 + (z_SI - self.distance / 2) ** 2) ** (3 / 2) + self.HH * 1 / (
self.radius ** 2 + (z_arg + self.distance / 2) ** 2) ** (3 / 2))
B *= 1e4 # conversion Gauss
return B
def k_sq(R_loop, z_loc, r, z):
""" Argument for elliptic integrals"""
return (4 * R_loop * r) / ((R_loop + r) ** 2 + (z - z_loc) ** 2)
def B_z_loop(I_current, R_loop, z_loc, r, z):
"""calculate z-component of B-field at position r and z for each individual loop"""
B_z = 2e-7 * I_current * 1 / ((R_loop + r) ** 2 + (z - z_loc) ** 2) ** (1 / 2) * (
sp.ellipk(BCoil.k_sq(R_loop, z_loc, r, z)) + sp.ellipe(BCoil.k_sq(R_loop, z_loc, r, z)) * (
R_loop ** 2 - r ** 2 - (z - z_loc) ** 2) / ((R_loop - r) ** 2 + (z - z_loc) ** 2))
B_z *= 1e4 # conversion to gauss
return B_z
def B_r_loop(I_current, R_loop, z_loc, r, z):
"""calculate r-component of B-field at position r and z for each individual loop"""
B_r = 2e-7 * I_current / r * (z - z_loc) / ((R_loop + r) ** 2 + (z - z_loc) ** 2) ** (1 / 2) * (
-sp.ellipk(BCoil.k_sq(R_loop, z_loc, r, z)) + sp.ellipe(BCoil.k_sq(R_loop, z_loc, r, z)) * (
R_loop ** 2 + r ** 2 + (z - z_loc) ** 2) / ((R_loop - r) ** 2 + (z - z_loc) ** 2))
B_r *= 1e4 # conversion to gauss
return B_r
def B_multiple(self, I_current, x, z, raster=10):
"""
Returns B_z along z-axis and B_x along x-axis,
HH = +1 --> Helmholtz configuration, HH = -1 --> Anti Helmholtz configuration
"""
z_start = self.get_zmin() + self.wire_height / 2 # (distance_coils/2 - windings * wire_height/2 + wire_height/2)*1e-3
R_start = self.get_R_inner() + self.wire_width / 2 # (R_inner + wire_width/2 )*1e-3
# Convert axis to SI units
x_SI = x * 1e-3
z_SI = z * 1e-3
if x[0] <= 0:
x_neg = np.abs([el for el in x_SI if el < 0])
x_pos = np.array([el for el in x_SI if el > 0])
x_zero = np.array([el for el in x_SI if el == 0])
B_z = np.zeros(len(z))
B_x_pos = np.zeros(len(x_pos))
B_x_neg = np.zeros(len(x_neg))
B_x_zero = x_zero # If there is a zero in the x-array it is assured that the x component of the field at this point is zero
# dividing each wire into 10 x 10 raster
I_current /= raster ** 2
for xx in range(0, self.layers):
for zz in range(0, self.windings):
for xx_in in range(0, raster):
for zz_in in range(0, raster):
z_pos = z_start + zz * (
self.wire_height + self.windings_spacing) - self.wire_height / 2 + zz_in * self.wire_height / (
raster - 1)
R_pos = R_start + xx * (
self.wire_width + self.layers_spacing) - self.wire_width / 2 + xx_in * self.wire_width / (
raster - 1)
B_z += BCoil.B_z_loop(I_current, R_pos, z_pos, 0, z_SI) + BCoil.B_z_loop(self.HH * I_current,
R_pos, -z_pos, 0, z_SI)
B_x_pos += BCoil.B_r_loop(I_current, R_pos, z_pos, x_pos, 0) + BCoil.B_r_loop(
self.HH * I_current, R_pos, -z_pos, x_pos, 0)
B_x_neg += BCoil.B_r_loop(I_current, R_pos, z_pos, x_neg, 0) + BCoil.B_r_loop(
self.HH * I_current, R_pos, -z_pos, x_neg, 0)
B_x_neg *= -1 # B_x_neg is pointing in opposite x_direction
B_x = np.concatenate((B_x_neg, B_x_zero, B_x_pos))
return B_z, B_x
def B_tot_along_axis(self, I_current, x, z, raster=10):
"""
return B_tot_z, B_tot_x
Returns B_tot_z along z-axis and B_tot_x along x-axis,
HH = +1 --> Helmholtz configuration, HH = -1 --> Anti Helmholtz configuration
"""
z_start = self.get_zmin() + self.wire_height / 2 # (distance_coils/2 - windings * wire_height/2 + wire_height/2)*1e-3
R_start = self.get_R_inner() + self.wire_width / 2 # (R_inner + wire_width/2 )*1e-3
# Convert axis to SI units
x_SI = x * 1e-3
z_SI = z * 1e-3
if x[0] <= 0:
x_neg = np.abs([el for el in x_SI if el < 0])
x_pos = np.array([el for el in x_SI if el > 0])
x_zero = np.array([el for el in x_SI if el == 0])
B_tot_z = np.zeros(len(z))
B_x_pos = np.zeros(len(x_pos))
B_x_neg = np.zeros(len(x_neg))
B_x_zero = x_zero # If there is a zero in the x-array it is assured that the x component of the field at this point is zero
B_z_x = np.zeros(len(x_SI))
# dividing each wire into 10 x 10 raster
I_current /= raster ** 2
for xx in range(0, self.layers):
for zz in range(0, self.windings):
for xx_in in range(0, raster):
for zz_in in range(0, raster):
z_pos = z_start + zz * (
self.wire_height + self.windings_spacing) - self.wire_height / 2 + zz_in * self.wire_height / (
raster - 1)
R_pos = R_start + xx * (
self.wire_width + self.layers_spacing) - self.wire_width / 2 + xx_in * self.wire_width / (
raster - 1)
# z-field along z-axis (x-Field always zero)
B_tot_z += BCoil.B_z_loop(I_current, R_pos, z_pos, 0, z_SI) + BCoil.B_z_loop(
self.HH * I_current, R_pos, -z_pos, 0, z_SI)
# x-field along x-axis
B_x_pos += BCoil.B_r_loop(I_current, R_pos, z_pos, x_pos, 0) + BCoil.B_r_loop(
self.HH * I_current, R_pos, -z_pos, x_pos, 0)
B_x_neg += BCoil.B_r_loop(I_current, R_pos, z_pos, x_neg, 0) + BCoil.B_r_loop(
self.HH * I_current, R_pos, -z_pos, x_neg, 0)
# B_z along x-axis:
B_z_x += BCoil.B_z_loop(I_current, R_pos, z_pos, x_SI, 0) + BCoil.B_z_loop(self.HH * I_current,
R_pos, -z_pos, x_SI,
0)
B_x_neg *= -1 # B_x_neg is pointing in opposite x_direction
B_x_x = np.zeros(len(x_SI))
B_x_x = np.concatenate((B_x_neg, B_x_zero, B_x_pos))
B_tot_x = np.sqrt(B_x_x ** 2 + B_z_x ** 2)
return B_tot_z, B_tot_x
def B_multiple_3d(self, I_current, x, z, raster=4):
z_start = self.get_zmin() + self.wire_height / 2
R_start = self.get_R_inner() + self.wire_width / 2
x_SI = x * 1e-3
z_SI = z * 1e-3
B = np.zeros([len(z_SI), len(x_SI), 2])
I_current /= raster ** 2
for el in range(0, len(x_SI)):
for xx in range(0, self.layers):
for zz in range(0, self.windings):
for xx_in in range(0, raster):
for zz_in in range(0, raster):
z_pos = z_start + zz * (
self.wire_height + self.windings_spacing) - self.wire_height / 2 + zz_in * self.wire_height / (
raster - 1)
R_pos = R_start + xx * (
self.wire_width + self.layers_spacing) - self.wire_width / 2 + xx_in * self.wire_width / (
raster - 1)
# compute z-value of field
B[:, el, 1] += BCoil.B_z_loop(I_current, R_pos, z_pos, np.abs(x_SI[el]),
z_SI) + BCoil.B_z_loop(self.HH * I_current, R_pos, -z_pos,
np.abs(x_SI[el]), z_SI)
# compute x-value
if x_SI[el] < 0:
B[:, el, 0] -= BCoil.B_r_loop(I_current, R_pos, z_pos, -x_SI[el],
z_SI) + BCoil.B_r_loop(self.HH * I_current, R_pos, -z_pos,
-x_SI[el], z_SI)
elif x_SI[el] > 0:
B[:, el, 0] += BCoil.B_r_loop(I_current, R_pos, z_pos, x_SI[el], z_SI) + BCoil.B_r_loop(
self.HH * I_current, R_pos, -z_pos, x_SI[el], z_SI)
elif x_SI[el] == 0:
B[:, el, 0] = 0
return B
def B_tot_3d(B):
return np.sqrt(B[:, :, 0] ** 2 + B[:, :, 1] ** 2)
def plot_3d(self, I_current, x_lim, z_lim):
x = np.arange(-x_lim, x_lim, 5)
z = np.arange(-z_lim, z_lim, 5)
x_m, z_m = np.meshgrid(x, z)
B = self.B_multiple_3d(I_current, x, z, raster=2)
B_tot = BCoil.B_tot_3d(B)
for xx in range(0, len(x)):
for zz in range(0, len(z)):
if B_tot[xx, zz] > 15:
B[xx, zz, :] /= B_tot[xx, zz] / 15
plt.figure(33)
plt.quiver(x_m, z_m, B[:, :, 0], B[:, :, 1])
plt.xlabel("x-axis [mm]")
plt.ylabel("z-axis [mm]")
plt.show()
def Bcurv(B_field, z):
return np.gradient(np.gradient(B_field, z), z) * 1e2
def Bgrad(B_field, z):
return np.gradient(B_field, z) * 1e1
def Bz_plot_HH(self, I_current, x, z):
B_z, B_x = self.B_multiple(I_current, x, z)
B_z_curvature = np.gradient(np.gradient(B_z, z), z)
plt.figure(100, figsize=(13, 10))
# plt.rcParams.update({'font.size': 15})
plt.suptitle("Helmholtz coil field B_z along z-axis")
# Field plot
##########################
plt.subplot(2, 1, 1)
plt.plot(z, B_z, linestyle="solid", label=r"$B_z$: Result via elliptic integrals")
# plt.xlim(-0.01,0.01)
plt.title("B-field")
plt.ylabel(r"$B_z$ [G]")
plt.xlabel("z-axis [mm]")
plt.legend()
plt.subplot(2, 1, 2)
plt.plot(z, B_z_curvature, linestyle="solid", label=r"$\nabla_z^2 B_z$: Result via elliptic integrals")
plt.ylabel(r"$\nabla_z^2 B_z [G/cm^2]$")
plt.xlabel("z-axis [mm]")
plt.xlim(-10, 10)
plt.title("Curvature of B-field")
plt.legend(loc='lower right')
plt.show()
def Bz_plot_HH_comp(self, Coil2, I_current, x, z):
B_z, B_x = self.B_multiple(I_current, x, z)
B_z_2, B_x_2 = Coil2.B_multiple(I_current, x, z)
B_z_curvature = np.gradient(np.gradient(B_z, z), z) * 1e2
B_z_curvature_2 = np.gradient(np.gradient(B_z_2, z), z) * 1e2
plt.figure(100, figsize=(13, 10))
# plt.rcParams.update({'font.size': 15})
plt.suptitle("Helmholtz coil field B_z along z-axis")
# Field plot
##########################
plt.subplot(2, 1, 1)
plt.plot(z, B_z, linestyle="solid", label=r"$B_z$")
plt.plot(z, B_z_2, linestyle="solid", label=r"$B_{z2}$")
# plt.xlim(-0.01,0.01)
plt.title("B-field")
plt.ylabel(r"$B_z$ [G]")
plt.xlabel("z-axis [mm]")
plt.legend()
plt.subplot(2, 1, 2)
plt.plot(z, B_z_curvature, linestyle="solid", label=r"$\nabla_z^2 B_z$")
plt.plot(z, B_z_curvature_2, linestyle="solid", label=r"$\nabla_z^2 B_{z2}$")
plt.ylabel(r"$\nabla_z^2 B_z [G/cm^2]$")
plt.xlabel("z-axis [mm]")
plt.xlim(-10, 10)
plt.title("Curvature of B-field")
plt.legend(loc='lower right')
plt.show()
def cooling(self, I_current, T):
"""
Print current density and power
Parameters
----------
I_current : current in A
T : temperature in degree Celsius
Returns
-------
None.
"""
j_dens = I_current / self.get_wire_area() * 1e-6
Power = self.resistance(T) * I_current ** 2
print(f"current density = {j_dens} A/mm^2")
print(f"Power = {Power} W")
def power(self, I_current, T):
P = self.resistance(T) * I_current ** 2
return P
def inductivity(self):
return cs.mu_0 * (self.layers * self.windings) ** 2 * self.radius ** 2 * np.pi / self.get_coil_height()
def induct_perry(self):
"""
Calculates inductance of rectangular coil via empirical formular by perry
"""
L = 4 * np.pi * (self.windings * self.layers) ** 2 * (1e2 * self.radius) ** 2 / (
0.2317 * 100 * self.radius + 0.44 * 100 * self.get_coil_height() + 0.39 * 100 * self.get_coil_width())
return L * 1e-9
def resistance(self, T):
"""
Calculates resistance of coil configuration in series
Parameters
----------
T : double
temperature in degree Celsius
Returns
-------
double
resistance in Ohm
"""
return 2 * cf.resistivity_copper(T) * self.get_wire_length() / self.get_wire_area()
HH_Coil = BCoil(HH=1, distance=54, radius=48, layers=4, windings=4, wire_height=1, wire_width=1, windings_spacing=0.25,
layers_spacing=0.25)
HH_Coil.set_R_outer(49.3)
HH_Coil.set_d_min(49.8)
L = HH_Coil.induct_perry()
HH_Coil.print_info()
print(L)

View File

@ -0,0 +1,18 @@
# -*- coding: utf-8 -*-
"""
Created on Wed Sep 15 12:01:05 2021
@author: Joschka
"""
import numpy as np
from src import physical_constants as cs
def resistivity_copper(T):
R_ref = cs.rho_copper_20
T_ref = 20 #degree celsius
alpha = 0.00393
R = R_ref *(1 + alpha * (T-T_ref))
return R
print(resistivity_copper(30))

31
src/physical_constants.py Normal file
View File

@ -0,0 +1,31 @@
# -*- coding: utf-8 -*-
"""
Created on Mon Aug 16 11:54:40 2021
@author: Joschka
"""
import numpy as np
#once and forever
mu_0 = 1.25663706212e-6
mu_B = 9.2740100783e-24
h = 6.62607015e-34
h_bar = h/(2*np.pi)
k_B = 1.38064852e-23
sigma_B = 5.670374419e-8
#Dysprosium
m_Dy_164 = 2.72210785e-25
Gamma_626 = 8.5e5
f_626 = 478.839e12
lambda_626 = 626.082e-9
#specific constants
rho_copper_20 = 1.68e-8
density_copper = 8.940e3