Updated B_tot_along_axis

B_multiple_3d has error
This commit is contained in:
schoener 2021-10-20 18:27:47 +02:00
parent dc1e81ee2f
commit 054477fbae

View File

@ -281,14 +281,10 @@ class BCoil:
HH = +1 --> Helmholtz configuration, HH = -1 --> Anti Helmholtz configuration HH = +1 --> Helmholtz configuration, HH = -1 --> Anti Helmholtz configuration
""" """
# z_start = self.get_zmin() + self.wire_height / 2 # (distance_coils/2 - windings * wire_height/2 + wire_height/2)*1e-3
# R_start = self.get_R_inner() + self.wire_width / 2 # (R_inner + wire_width/2 )*1e-3
# Convert axis to SI units
x_SI = x * 1e-3 x_SI = x * 1e-3
z_SI = z * 1e-3 z_SI = z * 1e-3
if x[0] <= 0: if x[0] <= 0: # divide array into positive and negative values
x_neg = np.abs([el for el in x_SI if el < 0]) x_neg = np.abs([el for el in x_SI if el < 0])
x_pos = np.array([el for el in x_SI if el > 0]) x_pos = np.array([el for el in x_SI if el > 0])
x_zero = np.array([el for el in x_SI if el == 0]) x_zero = np.array([el for el in x_SI if el == 0])
@ -306,7 +302,7 @@ class BCoil:
rastering_value = len(calc_raster[0]) rastering_value = len(calc_raster[0])
I_current /= rastering_value # divide current into smaller currents for mapping the whole wire I_current /= rastering_value # divide current into smaller currents for mapping the whole wire
start = time.time() # start = time.time()
for wire in range(0, self.get_N()): for wire in range(0, self.get_N()):
for ii in range(0, rastering_value): for ii in range(0, rastering_value):
# extract position information out of raster # extract position information out of raster
@ -322,8 +318,8 @@ class BCoil:
B_x_neg *= -1 # B_x_neg is pointing in opposite x_direction B_x_neg *= -1 # B_x_neg is pointing in opposite x_direction
B_x = np.concatenate((B_x_neg, B_x_zero, B_x_pos)) B_x = np.concatenate((B_x_neg, B_x_zero, B_x_pos))
end = time.time() # end = time.time()
print(f"time = {end - start} s") # print(f"time = {end - start} s")
return B_z, B_x return B_z, B_x
def B_tot_along_axis(self, I_current, x, z, raster=10): def B_tot_along_axis(self, I_current, x, z, raster=10):
@ -333,9 +329,6 @@ class BCoil:
HH = +1 --> Helmholtz configuration, HH = -1 --> Anti Helmholtz configuration HH = +1 --> Helmholtz configuration, HH = -1 --> Anti Helmholtz configuration
""" """
z_start = self.get_zmin() + self.wire_height / 2 # (distance_coils/2 - windings * wire_height/2 + wire_height/2)*1e-3
R_start = self.get_R_inner() + self.wire_width / 2 # (R_inner + wire_width/2 )*1e-3
# Convert axis to SI units # Convert axis to SI units
x_SI = x * 1e-3 x_SI = x * 1e-3
z_SI = z * 1e-3 z_SI = z * 1e-3
@ -352,43 +345,40 @@ class BCoil:
B_z_x = np.zeros(len(x_SI)) B_z_x = np.zeros(len(x_SI))
# dividing each wire into 10 x 10 raster # dividing each wire into 10 x 10 raster
calc_raster = self.full_raster(raster)
I_current /= raster ** 2 if self.get_N() != len(calc_raster):
log.error("N is not equal length of raster")
for xx in range(0, self.layers): rastering_value = len(calc_raster[0])
for zz in range(0, self.windings):
for xx_in in range(0, raster): I_current /= rastering_value # divide current into smaller currents for mapping the whole wire
for zz_in in range(0, raster): # start = time.time()
z_pos = z_start + zz * ( for wire in range(0, self.get_N()):
self.wire_height + self.insulation_thickness * 2) - self.wire_height / 2 + zz_in * self.wire_height / ( for ii in range(0, rastering_value):
raster - 1) # extract position information out of raster
R_pos = R_start + xx * ( z_pos = calc_raster[wire, ii, 0]
self.wire_width + self.insulation_thickness * 2) - self.wire_width / 2 + xx_in * self.wire_width / ( r_pos = calc_raster[wire, ii, 1]
raster - 1)
# TODO: fix z_pos, R_pos, either by raster or by spacing
# z-field along z-axis (x-Field always zero) # z-field along z-axis (x-Field always zero)
B_tot_z += BCoil.B_z_loop(I_current, R_pos, z_pos, 0, z_SI) + BCoil.B_z_loop( B_tot_z += BCoil.B_z_loop(I_current, r_pos, z_pos, 0, z_SI) + BCoil.B_z_loop(
self.HH * I_current, R_pos, -z_pos, 0, z_SI) self.HH * I_current, r_pos, -z_pos, 0, z_SI)
# x-field along x-axis # x-field along x-axis
B_x_pos += BCoil.B_r_loop(I_current, R_pos, z_pos, x_pos, 0) + BCoil.B_r_loop( B_x_pos += BCoil.B_r_loop(I_current, r_pos, z_pos, x_pos, 0) + BCoil.B_r_loop(
self.HH * I_current, R_pos, -z_pos, x_pos, 0) self.HH * I_current, r_pos, -z_pos, x_pos, 0)
B_x_neg += BCoil.B_r_loop(I_current, R_pos, z_pos, x_neg, 0) + BCoil.B_r_loop( B_x_neg += BCoil.B_r_loop(I_current, r_pos, z_pos, x_neg, 0) + BCoil.B_r_loop(
self.HH * I_current, R_pos, -z_pos, x_neg, 0) self.HH * I_current, r_pos, -z_pos, x_neg, 0)
# B_z along x-axis: # B_z along x-axis:
B_z_x += BCoil.B_z_loop(I_current, R_pos, z_pos, x_SI, 0) + BCoil.B_z_loop(self.HH * I_current, B_z_x += BCoil.B_z_loop(I_current, r_pos, z_pos, x_SI, 0) + BCoil.B_z_loop(self.HH * I_current,
R_pos, -z_pos, x_SI, r_pos, -z_pos, x_SI, 0)
0)
B_x_neg *= -1 # B_x_neg is pointing in opposite x_direction B_x_neg *= -1 # B_x_neg is pointing in opposite x_direction
# B_x_x = np.zeros(len(x_SI)) # B_x_x = np.zeros(len(x_SI))
B_tot_x = np.sqrt(B_x_x ** 2 + B_z_x ** 2)
B_x_x = np.concatenate((B_x_neg, B_x_zero, B_x_pos)) B_x_x = np.concatenate((B_x_neg, B_x_zero, B_x_pos))
B_tot_x = np.sqrt(B_x_x ** 2 + B_z_x ** 2)
B_tot_z = np.abs(B_tot_z)
return B_tot_z, B_tot_x return B_tot_z, B_tot_x
def B_multiple_3d(self, I_current, x, z, raster=4): def B_multiple_3d(self, I_current, x, z, raster=4):
@ -400,35 +390,37 @@ class BCoil:
B = np.zeros([len(z_SI), len(x_SI), 2]) B = np.zeros([len(z_SI), len(x_SI), 2])
I_current /= raster ** 2 calc_raster = self.full_raster(raster)
for el in range(0, len(x_SI)): if self.get_N() != len(calc_raster):
for xx in range(0, self.layers): log.error("N is not equal length of raster")
for zz in range(0, self.windings):
for xx_in in range(0, raster): rastering_value = len(calc_raster[0])
for zz_in in range(0, raster): # TODO: why division by zero?
z_pos = z_start + zz * (
self.wire_height + self.windings_spacing) - self.wire_height / 2 + zz_in * self.wire_height / ( I_current /= rastering_value # divide current into smaller currents for mapping the whole wire
raster - 1) # start = time.time()
R_pos = R_start + xx * ( for el in range(0,len(x_SI)):
self.wire_width + self.layers_spacing) - self.wire_width / 2 + xx_in * self.wire_width / ( for wire in range(0, self.get_N()):
raster - 1) for ii in range(0, rastering_value):
# TODO: fix z_pos, R_pos, either by raster or by spacing # extract position information out of raster
z_pos = calc_raster[wire, ii, 0]
r_pos = calc_raster[wire, ii, 1]
# compute z-value of field # compute z-value of field
B[:, el, 1] += BCoil.B_z_loop(I_current, R_pos, z_pos, np.abs(x_SI[el]), B[:, el, 1] += BCoil.B_z_loop(I_current, r_pos, z_pos, np.abs(x_SI[el]),
z_SI) + BCoil.B_z_loop(self.HH * I_current, R_pos, -z_pos, z_SI) + BCoil.B_z_loop(self.HH * I_current, r_pos, -z_pos,
np.abs(x_SI[el]), z_SI) np.abs(x_SI[el]), z_SI)
# compute x-value # compute x-value
if x_SI[el] < 0: if x_SI[el] < 0:
B[:, el, 0] -= BCoil.B_r_loop(I_current, R_pos, z_pos, -x_SI[el], B[:, el, 0] -= BCoil.B_r_loop(I_current, r_pos, z_pos, -x_SI[el],
z_SI) + BCoil.B_r_loop(self.HH * I_current, R_pos, -z_pos, z_SI) + BCoil.B_r_loop(self.HH * I_current, r_pos, -z_pos,
-x_SI[el], z_SI) -x_SI[el], z_SI)
elif x_SI[el] > 0: elif x_SI[el] > 0:
B[:, el, 0] += BCoil.B_r_loop(I_current, R_pos, z_pos, x_SI[el], z_SI) + BCoil.B_r_loop( B[:, el, 0] += BCoil.B_r_loop(I_current, r_pos, z_pos, x_SI[el], z_SI) + BCoil.B_r_loop(
self.HH * I_current, R_pos, -z_pos, x_SI[el], z_SI) self.HH * I_current, r_pos, -z_pos, x_SI[el], z_SI)
elif x_SI[el] == 0: elif x_SI[el] == 0:
B[:, el, 0] = 0 B[:, el, 0] = 0
@ -598,22 +590,22 @@ class BCoil:
def main(): def main():
HH_Coil = BCoil(HH=-1, distance=50, radius=40, layers=4, windings=8, wire_height=0.4, wire_width=0.4, HH_Coil = BCoil(HH=1, distance=50, radius=40, layers=8, windings=8, wire_height=0.4, wire_width=0.4,
insulation_thickness=0.1, is_round=True, winding_offset=False) insulation_thickness=0.1, is_round=True, winding_offset=True)
x = np.linspace(-50, 50, 200) x = np.linspace(-50, 50, 300)
z = np.linspace(-50, 50, 200) z = np.linspace(-50, 50, 300)
# Bz, Bx = HH_Coil.B_tot_along_axis(1.25, x, z) # Bz, Bx = HH_Coil.B_tot_along_axis(1.25, x, z)
Bz, Bx = HH_Coil.B_field(1.25, x, z) # Bz, Bx = HH_Coil.B_tot_along_axis(1.25, x, z)
print(Bx) # #print(Bx)
print(Bz) # #print(Bz)
plt.plot(x,Bx,label = "Bx") # plt.plot(x,Bx,label = "Bx")
plt.plot(z,Bz, label = "Bz") # plt.plot(z,Bz, label = "Bz")
plt.legend() # plt.legend()
plt.show() # plt.show()
#
HH_Coil.plot_raster(3) # HH_Coil.plot_raster(3)
ras = HH_Coil.full_raster(10) # ras = HH_Coil.full_raster(10)
HH_Coil.plot_3d(1.25,50,50)
main() main()
# if __name__ == "__main__": # if __name__ == "__main__":