DyLab_3D_MOT/FINAL_Coil/Final_Gradient_quality.py

114 lines
3.0 KiB
Python
Raw Permalink Normal View History

2022-09-02 13:30:37 +02:00
# -*- coding: utf-8 -*-
"""
Created on Mon Aug 23 17:40:37 2021
@author: Joschka
"""
import matplotlib.pyplot as plt
import numpy as np
#from src import B_field_calculation as bf
from src import coil_class as BC
#from IPython import get_ipython
#get_ipython().run_line_magic('matplotlib', 'qt')
#get_ipython().run_line_magic('matplotlib', 'inline')
#set up axis
x = np.linspace(-15, 15, 30001)
z = np.linspace(-15, 15, 30001)
# New coil
Wire_1 = [0.5, 0.568]
#Wire_1 = [0.45, 0.514]
#I_current = 0.94
AHH_Coil = BC.BCoil(HH = -1, distance = 69.622, radius = 47.528, layers = 8, windings=16,
wire_height = 0.5, wire_width=0.5, insulation_thickness=(0.546-0.5)/2,
is_round = True, winding_scheme= 2)
AHH_Coil.print_info()
R = AHH_Coil.resistance(22.5)
print(f"U = {1 * R}")
I_current = 1
# 0.4 to get from +-30300
AHH_Coil.print_info()
#Bz, Bx = AHH_Coil.B_field(I_current, x, z, raster = 7)
B_z, B_x_tot = AHH_Coil.B_field(I_current, x, z, raster = 7)
Bz = BC.BCoil.grad(B_z, z)
Bz_curv = BC.BCoil.curv(Bz, z)
#AHH_Coil.cooling(I_current,28)
print(f"Bz_grad(0) = {Bz[15000]} G")
#print(f"B_z_curvature(0) = {Bz_curv[15000]:.10f} G/cm^2")
#print(f"Bz(1 μm) = {Bz[15001]}")
#print(f"Bz(1 mm) = {Bz[16000]}")
print(f"Diff B +/- 1 μm: {Bz[15001] - Bz[15000]}, relative: {(Bz[15001] - Bz[15000])/Bz[15000]}")
print(f"Diff B +/- 0.5 mm: {Bz[15500] - Bz[15000]}, relative: {(Bz[15500] - Bz[15000])/Bz[15000]}")
print(f"Diff B +/- 1 mm: {Bz[16000] - Bz[15000]}, relative: {(Bz[16000] - Bz[15000])/Bz[15000]}")
#print(f"Diff B +/- 15 mm: {Bz[30000] - Bz[15000]}, relative: {(Bz[30000] - Bz[15000])/Bz[15000]}")
"""
plt.figure(300)
#Field plot
##########################
plt.subplot(2,1,1)
plt.plot(z,Bz,linestyle = "solid", label = r"$Bz along z-axis")
plt.plot(z,B_tot_z, linestyle = "dashed", label = "New B_tot along z-axis")
#plt.plot(x,B_tot_x, label = "B_tot along x-axis")
#plt.plot(z,B_z_comp,linestyle = "solid", label = r"$B_{z,1}$, d = 54 mm, R = 48.8 mm, I = 5 A, 4 x 4")
#plt.plot(z,B_tot,linestyle = "solid", label = r"$B_{z,1} + B_{z,2}$")
#plt.xlim(-0.01,0.01)
plt.title("B-field" )
plt.ylabel(r"$Bz$ [G]")
plt.xlabel("z-axis [mm]")
plt.legend()#bbox_to_anchor=(1.05, 1), loc='upper left')
plt.subplot(2,1,2)
plt.plot(z,Bz_curv,linestyle = "solid", label = r"$\nabla_z^2 B_{ref}$, d = 44 mm, R = 44 mm")
#plt.plot(z,B_z_comp_curv,linestyle = "solid", label = r"$\nabla_z^2 B_{z,1}$, d = 54 mm, R = 48.8 mm, I = 5 A")
#plt.plot(z,B_tot_curv,linestyle = "solid", label = r"$\nabla_z^2 B_{z,1} + B_{z,2}$")
plt.ylabel(r"$\nabla_z^2 Bz [G/cm^2]$")
plt.xlabel("z-axis [mm]")#plt.xlim(-10,10)
plt.title("Curvature of B-field")
plt.legend()#bbox_to_anchor=(1.05, 1), loc='upper left')
#plt.savefig("output/first_compensation_idea.png")
plt.show()
"""
"""
AHH ############################################################################
###############################################################################
###############################################################################
"""