%% Elementary constants clear; load qf epsilon=8.854187817e-12; c = 299792458; %Speed of light [m/s] h = 6.626070040e-34; %Planck constant [J/Hz] hbar = h/2/pi; u0 = 4*pi*1e-7; %Vacuum permeability [N/A^2] e0 = 1/u0/(c^2); %Vacuum permittivity [A^2*s^4/kg/m^3] qe = 1.6021766208e-19; %Elementary charge [C] G = 6.67408e-11; %Gravitational constant [m^3/kg/s^2] kB = 1.38064852e-23; %Boltzmann constant [J/K] me = 9.10938356e-31; %Electron rest mass [kg] mp = 1.672621898e-27; %Proton mass [kg] uB = qe*hbar /2/me; %Bohr magneton [J/T] uN = qe*hbar /2/mp; %Nuclear magnton [J/T] alpha = u0*qe^2*c/(2*h); %Fine structure constant u = 1.660539040e-27; %Atomic mass unit [kg] a0 = 4*pi*e0*hbar^2/me/qe^2; %Bohr radius [m] Eh = hbar^2/(me*a0^2); %Rydberg energy [eV] %% Laser Properties wavelength=532e-9; %Laser wavlength [m] k=2*pi/wavelength; %Wave vector [m^-1] P=10; %Power of each beam [W] wz0=60e-6; %Beam waist in z-theta-direction[m] wy0=250e-6; zRy=pi*wy0^2./wavelength; %Rayleigh wavelength zRz=pi*wz0^2./wavelength; theta=0.5/180*pi; %Half angle of interference x_ext =wz0./tan(theta); %Dysprosium Properties polar532=350*qe^2*a0^2/Eh; %Dynamical Polarizability of Dy at 532nm polar1064=193*qe^2*a0^2/Eh; mDy = 164*u; %Dysprosium mass [kg] %% Trapping frequency as Plane wave vz=sqrt(P.*polar532*k^2*sin(theta)^2/(pi^3*wz0*wy0*c*mDy*epsilon)); d = wavelength/(2*tan(theta)); %Fringe distance focus = 100e-3; D = wavelength*focus/d; %% Gaussian beams %Coordinate System n=[2001,3,2001]; xmax=(x_ext.*3/2); xmin=-(x_ext).*3/2; ymax=2.*wy0; ymin=-2.*wy0; zmax=2.*wz0; zmin=-2.*wz0; for i=1:3 x=linspace(xmin,xmax,n(1)); y=linspace(ymin,ymax,n(2)); z=linspace(zmin,zmax,n(3)); [X,Y,Z]=meshgrid(x,y,z); %Rotation of the coordinte system xTheta=X.*cos(theta)+Z.*sin(theta); xPhi=X.*cos(theta)-Z.*sin(theta); zTheta=-X.*sin(theta)+Z.*cos(theta); zPhi=X.*sin(theta)+Z.*cos(theta); %Electric field E0=sqrt(2*P/pi/(wz0*wy0)/c/epsilon); %Electric field at 0 wz1=wz0*sqrt(1+(xTheta./zRz).^2); %Beam waist in z-direction for Beam 1 wy1=wy0*sqrt(1+(xTheta./zRy).^2); %Beam waist in y-direction for Beam 1 wz2=wz0*sqrt(1+(xPhi./zRz).^2); %Beam waist in z-direction for Beam 2 wy2=wy0*sqrt(1+(xPhi./zRy).^2); %Beam waist in y-direction for Beam 1 R1y=xTheta.*(1+(zRy./xTheta).^2); %Rayleigh length Beam 1 R1z=xTheta.*(1+(zRz./xTheta).^2); R2y=xPhi.*(1+(zRy./xPhi).^2); %Rayleigh length Beam 2 R2z=xPhi.*(1+(zRz./xPhi).^2); R1y(:,floor(n(1)/2)+1,floor(n(3)/2)+1)=Inf; %Rayleigh length ->0 R1z(:,floor(n(1)/2)+1,floor(n(3)/2)+1)=Inf; R2y(:,floor(n(1)/2)+1,floor(n(3)/2)+1)=Inf; R2z(:,floor(n(1)/2)+1,floor(n(3)/2)+1)=Inf; gouyPhase1=atan(wavelength.*xTheta./(pi.*wz0.*wy0)); gouyPhase2=atan(wavelength.*xPhi./(pi.*wz0.*wy0)); E1=E0.*sqrt(wz0.*wy0)./sqrt(wz1.*wy1).*exp(-(zTheta./wz1).^2-(Y./wy1).^2).*exp(1i*(k.*xTheta-gouyPhase1)+1i.*k.*(zTheta.^2./2./R1z+Y.^2./2./R1y)); %Electric field Beam 1 E2=E0.*sqrt(wz0.*wy0)./sqrt(wz2.*wy2).*exp(-(zPhi./wz2).^2-(Y./wy2).^2).*exp(1i*(k.*xPhi-gouyPhase2)+1i.*k.*(zPhi.^2./2./R2z+Y.^2./2./R2y)); %Electric field Beam 2 %Intensity and trapping Potential Itot=abs(E1+E2).^2./2*c*epsilon; if i==1 %Set y=0 Itot_y=squeeze(Itot(2,:,:)); Imax=Itot_y(1001,1001); figure imagesc(x,z, Itot_y') title('x-z Interference Pattern for \theta=', theta*180/pi); colormap(QF); caxis([0 Imax]); %z-profile for x=0 Udip=0.5.*Itot_y.*polar532./epsilon./c; Umid=squeeze(Udip(floor(n(1)/2)+1,:)); zrange = find((-pi/(3*k*sin(theta))) < z & z < (pi./(3*k*sin(theta)))); zfit = z(zrange(1):zrange(length(zrange))); Ufit = Umid(zrange(1):zrange(length(zrange))); zfit = zfit(:); Ufit = Ufit(:); [pks, locs]=findpeaks(Umid); p = polyfitn(zfit,Ufit,'constant x^2'); % figure % plot(z,Umid, zfit, Ufit,'.', zfit, polyvaln(p,zfit)) % title('Trapping potential in z-direction for x=y=0') % %Fitted Trapping frequency % nu_zfixed=sqrt(-p.Coefficients(2)*2/mDy)/2/pi; %FWHM of x-profile (actually 1/e^2) Uz0=squeeze(Udip(:,floor(n(1)/2)+1)); Ufwhm= find(Uz0>Uz0(floor(n(1)/2)+1)/exp(2)); x_ext_fwhm=abs(x(Ufwhm(1))-x(Ufwhm(length(Ufwhm)))); x_range=x(Ufwhm); %x-profile for z=0 xrange=find((-x_ext_fwhm/10)