interfence patten
This commit is contained in:
parent
1742e54d58
commit
8796fb8555
69
Accordion_2.m
Normal file
69
Accordion_2.m
Normal file
@ -0,0 +1,69 @@
|
||||
clear;
|
||||
|
||||
% Elementary constants
|
||||
c = 299792458; %Speed of light [m/s]
|
||||
h = 6.626070040e-34; %Planck constant [J/Hz]
|
||||
hbar = h/2/pi;
|
||||
u0 = 4*pi*1e-7; %Vacuum permeability [N/A^2]
|
||||
e0 = 1/u0/(c^2); %Vacuum permittivity [A^2*s^4/kg/m^3]
|
||||
qe = 1.6021766208e-19; %Elementary charge [C]
|
||||
G = 6.67408e-11; %Gravitational constant [m^3/kg/s^2]
|
||||
kB = 1.38064852e-23; %Boltzmann constant [J/K]
|
||||
me = 9.10938356e-31; %Electron rest mass [kg]
|
||||
mp = 1.672621898e-27; %Proton mass [kg]
|
||||
uB = qe*hbar /2/me; %Bohr magneton [J/T]
|
||||
uN = qe*hbar /2/mp; %Nuclear magnton [J/T]
|
||||
alpha = u0*qe^2*c/(2*h); %Fine structure constant
|
||||
u = 1.660539040e-27; %Atomic mass unit [kg]
|
||||
a0 = 4*pi*e0*hbar^2/me/qe^2; %Bohr radius [m]
|
||||
Ry = 13.605693009; %Rydberg energy [eV]
|
||||
|
||||
%Dysprosium properties
|
||||
mDy = 164*u; %Dysprosium mass [kg]
|
||||
abuDy164 = 0.2826; %Dy164 abundance
|
||||
Polar1064 = 193*4*pi*e0*a0^3; %Dynamical polarizability of Dy for 1064 and 532 [A^2s^4/kg]
|
||||
Polar532 = 350*4*pi*e0*a0^3;
|
||||
|
||||
%Laser properties
|
||||
lambda = 532e-9; %Laser wavelength [m]
|
||||
k = 2*pi/lambda; %Wave number of laser [m^-1]
|
||||
P0 = 10; %Power [W]
|
||||
|
||||
%Coordinate rotation y-axis for E1
|
||||
theta= 4/180*pi; %Half angle between the beams
|
||||
x = linspace(-3000,3000,1501)*1e-6; %Definition of coordinate System
|
||||
y = 0;
|
||||
z = linspace(-300,300,1501)*1e-6;
|
||||
|
||||
[X,Z]=meshgrid(x,z);
|
||||
xt= X.*cos(theta)+Z.*sin(theta);
|
||||
yt = y;
|
||||
zt= -X.*sin(theta)+Z.*cos(theta);
|
||||
|
||||
%Gaussian beam propagating in xt direction
|
||||
w0 = 90e-6; %Beam waist at x=xt=0 (center of the trap)
|
||||
xr = pi*w0.^2/lambda; %Rayleigh length i xt-direction
|
||||
wxt = w0.*sqrt(1+(xt./xr).^2); %Radius to 1/e
|
||||
P = P0/2;
|
||||
|
||||
E0 = sqrt(2*P./(pi*wxt.^2*c*e0)); %Electric field at time 0 , x=-f origin
|
||||
E1 = E0*w0./wxt.*exp(-(zt.^2+yt.^2)./wxt.^2).*exp(-1i*k.*xt); %Electric field 1
|
||||
|
||||
%Coordinate rotation y-axis for E2
|
||||
theta= -theta; %Half angle between the beams
|
||||
xt= X.*cos(theta)+Z.*sin(theta);
|
||||
yt = y;
|
||||
zt= -X.*sin(theta)+Z.*cos(theta);
|
||||
|
||||
E2 = E0*w0./wxt.*exp(-(zt.^2+yt.^2)./wxt.^2).*exp(-1i*k.*xt); %Electric field 1
|
||||
|
||||
%Interference of the two beams
|
||||
Itot = abs(E1+E2).^2 ; %Intensity of the interference pattern
|
||||
|
||||
figure
|
||||
imagesc(x,z,Itot)
|
||||
set(gca,'YDir','normal')
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user