ROOT Analysis for the Inclusive Detachted Dilepton Trigger Lines
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

345 lines
14 KiB

#include "TH1D.h"
#include "TH2D.h"
#include "THStack.h"
#include "TGraph.h"
#include "TTree.h"
#include "TChain.h"
#include "TFile.h"
#include "TCanvas.h"
#include "TROOT.h"
#include "TStyle.h"
#include "TColor.h"
#include "TLorentzVector.h"
#include "TRandom3.h"
#include "TLorentzVector.h"
#include "RooDataHist.h"
#include "RooRealVar.h"
#include "RooPlot.h"
#include "RooGaussian.h"
#include "RooExponential.h"
#include "RooRealConstant.h"
#include "RooAddPdf.h"
#include "RooFitResult.h"
#include "RooProduct.h"
#include "RooCrystalBall.h"
#include "RooBreitWigner.h"
#include <string>
#include <iostream>
#include <cmath>
const int nBins = 70;
const Double_t MASS_HIST_MIN = 5100.;
const Double_t MASS_HIST_MAX = 6000.;
const Double_t J_PSI_MASS = 3096.916;
std::vector<RooPlot*> CreateRooFit(TH1D *hist);
bool inRange(double value, double center, double low_intvl, double up_intvl) {
return center - low_intvl < value && value < center + up_intvl;
}
bool inRange(double value, double center, double intvl) {
return inRange(value, center, intvl, intvl);
}
int pre_selection_cuts()
{
// just some plotting options
gROOT->SetStyle("Plain");
TPad foo;
const int NRGBs = 5;
const int NCont = 250;
double stops[NRGBs] = {0.00, 0.34, 0.61, 0.84, 1.00};
double red[NRGBs] = {0.00, 0.00, 0.87, 1.00, 0.51};
double green[NRGBs] = {0.00, 0.81, 1.00, 0.20, 0.00};
double blue[NRGBs] = {0.51, 1.00, 0.12, 0.00, 0.00};
TColor::CreateGradientColorTable(NRGBs, stops, red, green, blue, NCont);
gStyle->SetNumberContours(NCont);
gStyle->SetLabelFont(132, "xyz");
gStyle->SetTitleFont(132, "xyz");
gStyle->SetLegendFont(132);
gStyle->SetStatFont(132);
gStyle->SetEndErrorSize(10.0);
gStyle->SetOptStat(0);
gStyle->SetOptFit(0);
// files to load
std::vector<std::string> data_filenames =
{
"/auto/data/pfeiffer/inclusive_detached_dilepton/data_samples/BuToKpMuMu_Collision23_Beam6800GeV-VeloClosed-MagDown-Excl-UT_RealData_Sprucing23r1_90000000_RD.root"};
TChain *data_chain = new TChain("SpruceRD_BuToKpMuMu/DecayTree");
for (unsigned int i = 0; i < data_filenames.size(); i++)
{
data_chain->Add(data_filenames.at(i).c_str());
}
// files to load
std::vector<std::string> mc_filenames =
{
"/auto/data/pfeiffer/inclusive_detached_dilepton/MC/BuToKpMuMu_rd_btoxll_simulation_12143001_MagDown_v0r0p6316365_FULLSTREAM.root"};
TChain *mc_chain = new TChain("BuToKpMuMu_noPID/DecayTree");
for (unsigned int i = 0; i < mc_filenames.size(); i++)
{
mc_chain->Add(mc_filenames.at(i).c_str());
}
Double_t Bplus_M, // 4400 -> 8200
Jpsi_M, // 200 -> 6600
Kplus_M; // 493.6769 -> 493.6779
Float_t Bplus_PT, // 0 -> 30 * 10^3
Bplus_BPVFDCHI2, // 0 -> 7000
Bplus_BPVIPCHI2,
Jpsi_BPVIPCHI2, // 0 -> 3
Jpsi_PT, // 0 -> 26 * 10^3
Kplus_BPVIPCHI2, // 0 -> 7
Kplus_PT; // 0 -> 11 * 10^3
Double_t Bplus_M_mc, // 4400 -> 8200
Jpsi_M_mc, // 200 -> 6600
Kplus_M_mc, // 493.6769 -> 493.6779
Kplus_PID_K; // -20 -> 20
Float_t Bplus_PT_mc, // 0 -> 30 * 10^3
Bplus_BPVFDCHI2_mc, // 0 -> 7000
Jpsi_BPVIPCHI2_mc, // 0 -> 3
Jpsi_PT_mc, // 0 -> 26 * 10^3
Kplus_BPVIPCHI2_mc, // 0 -> 7
Kplus_PT_mc, // 0 -> 11 * 10^3
Kplus_PID_K_mc;
Float_t muplus_PX, // 0 -> 30 * 10^3
muplus_PY, // 0 -> 7000
muplus_PZ, // 0 -> 3
muplus_ENERGY, // 0 -> 26 * 10^3
muminus_PX, // 0 -> 7
muminus_PY, // 0 -> 11 * 10^3
muminus_PZ, // 0 -> 7
muminus_ENERGY; // 0 -> 11 * 10^3
data_chain->SetBranchAddress("Bplus_M", &Bplus_M);
data_chain->SetBranchAddress("Bplus_PT", &Bplus_PT);
data_chain->SetBranchAddress("Bplus_BPVFDCHI2", &Bplus_BPVFDCHI2);
data_chain->SetBranchAddress("Bplus_BPVIPCHI2", &Bplus_BPVIPCHI2);
data_chain->SetBranchAddress("Jpsi_M", &Jpsi_M);
data_chain->SetBranchAddress("Jpsi_BPVIPCHI2", &Jpsi_BPVIPCHI2);
data_chain->SetBranchAddress("Jpsi_PT", &Jpsi_PT);
data_chain->SetBranchAddress("Kplus_M", &Kplus_M);
data_chain->SetBranchAddress("Kplus_BPVIPCHI2", &Kplus_BPVIPCHI2);
data_chain->SetBranchAddress("Kplus_PT", &Kplus_PT);
data_chain->SetBranchAddress("Kplus_PID_K", &Kplus_PID_K);
data_chain->SetBranchAddress("muplus_PX", &muplus_PX);
data_chain->SetBranchAddress("muplus_PY", &muplus_PY);
data_chain->SetBranchAddress("muplus_PZ", &muplus_PZ);
data_chain->SetBranchAddress("muplus_ENERGY", &muplus_ENERGY);
data_chain->SetBranchAddress("muminus_PX", &muminus_PX);
data_chain->SetBranchAddress("muminus_PY", &muminus_PY);
data_chain->SetBranchAddress("muminus_PZ", &muminus_PZ);
data_chain->SetBranchAddress("muminus_ENERGY", &muminus_ENERGY);
mc_chain->SetBranchAddress("B_M", &Bplus_M_mc);
mc_chain->SetBranchAddress("B_PT", &Bplus_PT_mc);
mc_chain->SetBranchAddress("B_BPVFDCHI2", &Bplus_BPVFDCHI2_mc);
mc_chain->SetBranchAddress("Jpsi_M", &Jpsi_M_mc);
mc_chain->SetBranchAddress("Jpsi_BPVIPCHI2", &Jpsi_BPVIPCHI2_mc);
mc_chain->SetBranchAddress("Jpsi_PT", &Jpsi_PT_mc);
mc_chain->SetBranchAddress("K_M", &Kplus_M_mc);
mc_chain->SetBranchAddress("K_BPVIPCHI2", &Kplus_BPVIPCHI2_mc);
mc_chain->SetBranchAddress("K_PT", &Kplus_PT_mc);
TH1D *h1_Bplus_M = new TH1D("h1_Bplus_M", "B+ Mass", nBins, MASS_HIST_MIN, MASS_HIST_MAX);
TH1D *h1_Bplus_PT = new TH1D("h1_Bplus_PT", "B+ P_{T}", nBins, 0, 15000);
TH1D *h1_Bplus_BPVFDCHI2 = new TH1D("h1_Bplus_BPVFDCHI2", "B+ FD #chi^{2}", nBins, 0, 1500);
TH1D *h1_Jpsi_M = new TH1D("h1_Jpsi_M", "J/#psi Mass", nBins, 200, 6600);
TH1D *h1_Jpsi_BPVIPCHI2 = new TH1D("h1_Jpsi_BPVIPCHI2", "J/#psi IP #chi^{2}", nBins, 0, 100);
TH1D *h1_Jpsi_PT = new TH1D("h1_Jpsi_PT", "J/#psi P_{T}", nBins, 0, 15000);
TH1D *h1_Kplus_M = new TH1D("h1_Kplus_M", "K^{+} Mass", nBins, 493.676999999, 493.677000001);
TH1D *h1_Kplus_BPVIPCHI2 = new TH1D("h1_Kplus_BPVIPCHI2", "K^{+} IP #chi^{2}", nBins, 0, 100);
TH1D *h1_Kplus_PT = new TH1D("h1_Kplus_PT", "K^{+} P_{T}", nBins, 0, 6500);
TH1D *h1_Kplus_PID_K = new TH1D("h1_Kplus_PID_K", "K^{+} PID K", nBins, -5, 5);
TH1D *h1_bkg_Bplus_M = new TH1D("h1_bkg_Bplus_M", "B+ Mass", nBins, MASS_HIST_MIN, MASS_HIST_MAX);
TH1D *h1_bkg_Bplus_PT = new TH1D("h1_bkg_Bplus_PT", "B+ P_{T}", nBins, 0, 15000);
TH1D *h1_bkg_Bplus_BPVFDCHI2 = new TH1D("h1_bkg_Bplus_BPVFDCHI2", "B+ FD #chi^{2}", nBins, 0, 1500);
TH1D *h1_bkg_Jpsi_M = new TH1D("h1_bkg_Jpsi_M", "J/#psi Mass", nBins, 200, 6600);
TH1D *h1_bkg_Jpsi_BPVIPCHI2 = new TH1D("h1_bkg_Jpsi_BPVIPCHI2", "J/#psi IP #chi^{2}", nBins, 0, 100);
TH1D *h1_bkg_Jpsi_PT = new TH1D("h1_bkg_Jpsi_PT", "J/#psi P_{T}", nBins, 0, 15000);
TH1D *h1_bkg_Kplus_M = new TH1D("h1_bkg_Kplus_M", "K^{+} Mass", nBins, 493.676999999, 493.677000001);
TH1D *h1_bkg_Kplus_BPVIPCHI2 = new TH1D("h1_bkg_Kplus_BPVIPCHI2", "K^{+} IP #chi^{2}", nBins, 0, 100);
TH1D *h1_bkg_Kplus_PT = new TH1D("h1_bkg_Kplus_PT", "K^{+} P_{T}", nBins, 0, 6500);
TH1D *h1_bkg_Kplus_PID_K = new TH1D("h1_bkg_Kplus_PID_K", "K^{+} PID K", nBins, -5, 5);
unsigned int entries = data_chain->GetEntries();
unsigned int nan_values = 0;
// loop over all entries in the tree
for (unsigned int i = 0; i < entries; i++)
{
data_chain->GetEntry(i);
const double JSPI_MASS = 3096.;
if (!std::isfinite(Jpsi_M)) {
nan_values++;
continue;
}
TLorentzVector v4_muplus(muplus_PX, muplus_PY, muplus_PZ, muplus_ENERGY);
TLorentzVector v4_muminus(muminus_PX, muminus_PY, muminus_PZ, muminus_ENERGY);
Double_t mumu_inv_mass = (v4_muplus + v4_muminus).M();
if (inRange(mumu_inv_mass, J_PSI_MASS, 120.))
{
h1_Bplus_M->Fill(Bplus_M);
}
h1_bkg_Bplus_PT->Fill(Bplus_PT);
h1_bkg_Bplus_BPVFDCHI2->Fill(Bplus_BPVFDCHI2);
h1_bkg_Jpsi_M->Fill(Jpsi_M);
h1_bkg_Jpsi_BPVIPCHI2->Fill(Jpsi_BPVIPCHI2);
h1_bkg_Jpsi_PT->Fill(Jpsi_PT);
h1_bkg_Kplus_M->Fill(Kplus_M);
h1_bkg_Kplus_BPVIPCHI2->Fill(Kplus_BPVIPCHI2);
h1_bkg_Kplus_PT->Fill(Kplus_PT);
h1_bkg_Kplus_PID_K->Fill(Kplus_PID_K);
}
std::cout << TString::Format("Skipped %d NaN Values.", nan_values) << std::endl;
unsigned int mc_entries = mc_chain->GetEntries();
for (size_t i = 0; i < mc_entries; i++)
{
mc_chain->GetEntry(i);
h1_Bplus_PT->Fill(Bplus_PT_mc);
h1_Bplus_BPVFDCHI2->Fill(Bplus_BPVFDCHI2_mc);
h1_Jpsi_M->Fill(Jpsi_M_mc);
h1_Jpsi_BPVIPCHI2->Fill(Jpsi_BPVIPCHI2_mc);
h1_Jpsi_PT->Fill(Jpsi_PT_mc);
h1_Kplus_M->Fill(Kplus_M);
h1_Kplus_BPVIPCHI2->Fill(Kplus_BPVIPCHI2_mc);
h1_Kplus_PT->Fill(Kplus_PT_mc);
h1_Kplus_PID_K->Fill(Kplus_PID_K_mc);
}
TCanvas *c1 = new TCanvas("c1", "Canvas 1", 0, 0, 800, 600);
//h1_bkg_Bplus_M->SetLineColor(kRed);
//h1_bkg_Bplus_M->Draw();
h1_Bplus_M->Draw();
c1->Draw();
std::vector<TH1 *> small_histos{h1_Bplus_PT, h1_Bplus_BPVFDCHI2, h1_Jpsi_M, h1_Jpsi_BPVIPCHI2, h1_Jpsi_PT, h1_Kplus_M, h1_Kplus_BPVIPCHI2, h1_Kplus_PT, h1_Kplus_PID_K};
std::vector<TH1 *> small_bkg_histos{h1_bkg_Bplus_PT, h1_bkg_Bplus_BPVFDCHI2, h1_bkg_Jpsi_M, h1_bkg_Jpsi_BPVIPCHI2, h1_bkg_Jpsi_PT, h1_bkg_Kplus_M, h1_bkg_Kplus_BPVIPCHI2, h1_bkg_Kplus_PT, h1_bkg_Kplus_PID_K};
TCanvas *c2 = new TCanvas("c2", "Canvas 2", 0, 0, 1200, 600);
c2->Divide(4, 3);
for (size_t i = 0; i < small_histos.size(); i++)
{
c2->cd(i + 1);
// small_histos[i]->SetLineWidth(1);
// small_histos[i]->SetMinimum(0);
// small_histos[i]->SetLineColor(kRed);
// small_histos[i]->SetFillColor(kRed);
// small_histos[i]->SetFillStyle(3004);
// small_histos[i]->Scale(1. / small_histos[i]->Integral(), "width");
small_bkg_histos[i]->SetLineColor(kBlue);
small_bkg_histos[i]->SetLineWidth(2);
small_bkg_histos[i]->SetMinimum(0);
// small_bkg_histos[i]->Scale(1. / small_bkg_histos[i]->Integral(), "width");
// if (small_histos[i]->GetMaximum() > small_bkg_histos[i]->GetMaximum())
// {
// small_histos[i]->Draw("HIST");
// small_bkg_histos[i]->Draw("HIST SAME");
// }
// else
// {
// small_bkg_histos[i]->Draw("HIST");
// small_histos[i]->Draw("HIST SAME");
// }
small_bkg_histos[i]->Draw("HIST");
}
c2->Draw();
TCanvas *c3 = new TCanvas("c3", "Canvas 3", 0, 0, 1000, 700);
auto fittedPlots = CreateRooFit(h1_Bplus_M);
auto *p2 = new TPad("p2", "Pull", 0., 0., 1., 0.3);
p2->Draw();
p2->SetTopMargin(0.001);
p2->SetBottomMargin(0.3);
p2->SetGrid();
auto *p1 = new TPad("p1", "Fit", 0., 0.32, 1., 1.);
p1->Draw();
p1->SetBottomMargin(0.001);
p1->cd();
fittedPlots[0]->Draw();
p2->cd();
fittedPlots[1]->Draw();
c3->Draw();
return 0;
}
std::vector<RooPlot*> CreateRooFit(TH1D *hist)
{
RooRealVar roo_var_mass("roo_var_mass", "B+ Mass Variable", MASS_HIST_MIN, MASS_HIST_MAX);
roo_var_mass.setRange("fitting_range", 5100., 6000.);
TString hist_name = "roohist_bplus_M";
RooDataHist roohist_bplus_M(hist_name, "B Plus Mass Histogram", roo_var_mass, RooFit::Import(*hist));
RooRealVar roo_sig_bw_mean("roo_sig_bw_mean", "Mass BW Mean", 5250., 5100., 5400.);
RooRealVar roo_sig_bw_with("roo_sig_bw_with", "Mass BW Width", 20., 0., 50.);
RooBreitWigner roo_sig_bw("roo_sig_bw", "B+ Signal Breit Wigner", roo_var_mass, roo_sig_bw_mean, roo_sig_bw_with);
RooRealVar roo_bkg_exp_c("roo_bkg_exp_c", "Background C", -0.001145, -0.00199, -0.00100);
RooExponential roo_bkg_exp("roo_bkg_exp", "B+ Mass Background Exp", roo_var_mass, roo_bkg_exp_c);
RooRealVar roo_var_mass_nsig("roo_var_mass_nsig", "B+ Mass N Signal", 0., hist->GetEntries());
RooRealVar roo_var_mass_nbkg("roo_var_mass_nbkg", "B+ Mass N Background", 0., hist->GetEntries());
TString pdf_name = "roo_pdf_sig_plus_bkg";
RooAddPdf roo_pdf_sig_plus_bkg(pdf_name, "Sig + Bkg PDF",
RooArgList(roo_sig_bw, roo_bkg_exp),
RooArgList(roo_var_mass_nsig, roo_var_mass_nbkg));
RooPlot *roo_frame_mass = roo_var_mass.frame();
roohist_bplus_M.plotOn(roo_frame_mass, RooFit::Binning(nBins), RooFit::Name(hist_name));
RooFitResult *fitres = roo_pdf_sig_plus_bkg.fitTo(roohist_bplus_M, RooFit::Save(), RooFit::PrintLevel(1), RooFit::Range("fitting_range"));
roo_pdf_sig_plus_bkg.plotOn(roo_frame_mass, RooFit::VisualizeError(*fitres, 1), RooFit::FillColor(kOrange + 1), RooFit::FillStyle(3144));
roo_pdf_sig_plus_bkg.plotOn(roo_frame_mass, RooFit::LineColor(kRed), RooFit::LineStyle(kSolid), RooFit::Range("fitting_range"), RooFit::Name(pdf_name));
roo_pdf_sig_plus_bkg.plotOn(roo_frame_mass, RooFit::Components(RooArgSet(roo_bkg_exp)), RooFit::LineColor(kBlue), RooFit::LineStyle(kDashed), RooFit::Range("fitting_range"));
roo_pdf_sig_plus_bkg.paramOn(roo_frame_mass, RooFit::Layout(0.50, 0.99, 0.90));
roo_frame_mass->getAttText()->SetTextSize(0.025);
RooPlot *roo_frame_pull = roo_var_mass.frame(RooFit::Title("Pull Distribution"));
roo_frame_pull->addPlotable(roo_frame_mass->pullHist(hist_name, pdf_name), "P");
return std::vector<RooPlot*> { roo_frame_mass, roo_frame_pull };
}