#include #include #include #include #include #include #include "TH1D.h" #include "TH2D.h" #include "THStack.h" #include "TGraph.h" #include "TTree.h" #include "TChain.h" #include "TFile.h" #include "TCanvas.h" #include "TROOT.h" #include "TStyle.h" #include "TColor.h" #include "TLorentzVector.h" #include "TRandom3.h" #include "TLegend.h" #include "RooDataHist.h" #include "RooRealVar.h" #include "RooPlot.h" #include "RooGaussian.h" #include "RooExponential.h" #include "RooRealConstant.h" #include "RooAddPdf.h" #include "RooFitResult.h" #include "RooProduct.h" #include "RooCrystalBall.h" #include "RooBreitWigner.h" #include "RooArgSet.h" #include "RooFFTConvPdf.h" #include "RooNovosibirsk.h" #include "constants.h" #include "basic_analysis.h" #include "hlt1_decision_analysis.h" #include "bdt_classification.h" // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Inclusive :: B0 To Hp Hm Mu Mu %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% int new_analysis_b02hphmmumu() { const char *analysis_name = "B0ToHpHmMuMu"; const char *data_tree_name = "B0ToHpHmMuMu"; const char *sim_tree_name = "B0ToHpHmMuMu_noPID"; const char *end_state_mass_literal = "m(#pi^{+}_{(#rightarrow K^{+})}#pi^{-}_{(#rightarrow K^{-})}#mu^{+}#mu^{-})"; const bool retrain_bdt = true; TChain *data_chain = new TChain(TString::Format("%s/DecayTree", data_tree_name)); // data_chain->Add("/auto/data/pfeiffer/inclusive_detached_dilepton/data_samples/spruce_magdown_2023_v0_tuple_90000000_v0r0p6288631.root"); data_chain->Add("/auto/data/pfeiffer/inclusive_detached_dilepton/data_samples/spruce_magdown_2023_v0r1_tuple_90000000_2023_v0r0p6288631.root"); Double_t Hp_PID_K, Hm_PID_K; data_chain->SetBranchAddress("Hp_PID_K", &Hp_PID_K); data_chain->SetBranchAddress("Hm_PID_K", &Hm_PID_K); FourVect *l14v_data = FourVect::Init(data_chain, "L1"); FourVect *l24v_data = FourVect::Init(data_chain, "L2"); FourVect *hp4v_data = FourVect::Init(data_chain, "Hp"); FourVect *hm4v_data = FourVect::Init(data_chain, "Hm"); TChain *sim_chain = new TChain(TString::Format("%s/DecayTree", sim_tree_name)); sim_chain->Add("/auto/data/pfeiffer/inclusive_detached_dilepton/MC/rd_btoxll_simulation_fullstream_v0r0p6671378_B0ToKpPimMuMu_11144002_magdown.root"); FourVect *l14v_sim = FourVect::Init(sim_chain, "L1"); FourVect *l24v_sim = FourVect::Init(sim_chain, "L2"); FourVect *hp4v_sim = FourVect::Init(sim_chain, "Hp"); FourVect *hm4v_sim = FourVect::Init(sim_chain, "Hm"); Int_t B_BKGCAT, L1_TRUEID, L2_TRUEID, Hp_TRUEID, Hm_TRUEID; sim_chain->SetBranchAddress("L1_TRUEID", &L1_TRUEID); sim_chain->SetBranchAddress("L2_TRUEID", &L2_TRUEID); sim_chain->SetBranchAddress("Hp_TRUEID", &Hp_TRUEID); sim_chain->SetBranchAddress("Hm_TRUEID", &Hm_TRUEID); sim_chain->SetBranchAddress("B0_BKGCAT", &B_BKGCAT); TH1D *h1_B_Mass_jpsi = new TH1D("h1_B_Mass_jpsi", TString::Format("B Mass, J/#psi Mode (%s)", analysis_name), B_MASS_HIST_BINS, B_MASS_VAR_MIN, B_MASS_VAR_MAX); TH1D *h1_B_Mass_psi2s = new TH1D("h1_B_Mass_psi2s", TString::Format("B Mass, #psi(2S) Mode (%s)", analysis_name), B_MASS_HIST_BINS, B_MASS_VAR_MIN, B_MASS_VAR_MAX); TH1D *h1_B_Mass_sim = new TH1D("h1_B_Mass_sim", TString::Format("B Mass, Simualted (%s_noPID)", analysis_name), B_MASS_HIST_BINS, B_MASS_VAR_MIN, B_MASS_VAR_MAX); TH2D *h2_Hlt1_flags_B_Mass = new TH2D("h2_Hlt1_flags_B_Mass", "Hlt1 Decision vs B Mass", 50, 5100, 5400, 13, 1., 14.); TH2D *h2_Hlt1_flags_excl_B_Mass = new TH2D("h2_Hlt1_flags_excl_B_Mass", "Excl Hlt1 Decision vs B Mass", 50, 5100, 5400, 13, 1., 14.); TH1D *h1_bdt_probs = new TH1D("h1_bdt_probs", "BDT Probabilities", 100, -1, 1); h1_B_Mass_jpsi->GetXaxis()->SetTitle(end_state_mass_literal); h1_B_Mass_psi2s->GetXaxis()->SetTitle(end_state_mass_literal); h2_Hlt1_flags_B_Mass->GetXaxis()->SetTitle(end_state_mass_literal); h2_Hlt1_flags_excl_B_Mass->GetXaxis()->SetTitle(end_state_mass_literal); ConnectHlt1Decisions(data_chain, h2_Hlt1_flags_B_Mass, h2_Hlt1_flags_excl_B_Mass); auto hlt1_decision_histos = CreateHlt1DecisionHistos(analysis_name); std::map exclusive_hits{}; std::vector vars{ TV::Float("B0_PT", "B0_PT"), TV::Float("B0_BPVFDCHI2", "B0_BPVFDCHI2"), TV::Float("B0_BPVDIRA", "B0_BPVDIRA"), TV::Float("Jpsi_BPVIPCHI2", "Jpsi_BPVIPCHI2"), // TV::Float("Jpsi_BPVDIRA", "Jpsi_BPVDIRA"), TV::Float("Jpsi_PT", "Jpsi_PT"), TV::Float("Hp_BPVIPCHI2", "Hp_BPVIPCHI2"), TV::Float("Hp_PT", "Hp_PT"), TV::Float("Hm_BPVIPCHI2", "Hm_BPVIPCHI2"), TV::Float("Hm_PT", "Hm_PT"), // TV::Double("Kplus_PID_K", "K_PID_K"), TV::Double("Hp_PROBNN_K", "Hp_PROBNN_K"), TV::Double("Hm_PROBNN_K", "Hm_PROBNN_K"), TV::Float("L1_BPVIPCHI2", "L1_BPVIPCHI2"), TV::Float("L2_BPVIPCHI2", "L2_BPVIPCHI2"), }; TTree *sig_tree = new TTree("TreeS", "tree containing signal data"); TTree *bkg_tree = new TTree("TreeB", "tree containing background data"); ConnectVarsToData(vars, data_chain, sim_chain, sig_tree, bkg_tree); unsigned int data_entries = data_chain->GetEntries(); unsigned int sim_entries = 100000; // sim_chain->GetEntries(); unsigned int bkg_events = 0; if (retrain_bdt) { std::cout << "# Starting with BDT retrain." << std::endl; for (unsigned int i = 0; i < data_entries; i++) { data_chain->GetEntry(i); TLorentzVector reconstructed_Kstar{}; bool found_k_star = false; if (Hp_PID_K > 0 && Hm_PID_K < 0) { reconstructed_Kstar = hp4v_data->LorentzVector(K_MASS) + hm4v_data->LorentzVector(); found_k_star = true; } else if (Hm_PID_K > 0 && Hp_PID_K < 0) { reconstructed_Kstar = hp4v_data->LorentzVector() + hm4v_data->LorentzVector(K_MASS); found_k_star = true; } if (found_k_star) { Double_t reconstructed_B_Mass = (reconstructed_Kstar + l14v_data->LorentzVector() + l24v_data->LorentzVector()).M(); if (std::all_of(vars.begin(), vars.end(), [](TV *v) { return v->IsDataFinite(); })) { if (reconstructed_B_Mass > 5500.) { bkg_tree->Fill(); bkg_events++; } } } PrintProgress(TString::Format("%s BKG Collection", analysis_name), data_entries, 10000, i); } } else { std::cout << "# Starting without BDT retrain." << std::endl; } for (unsigned int i = 0; i < sim_entries; i++) { sim_chain->GetEntry(i); if (B_BKGCAT == 30 && TMath::Abs(L1_TRUEID) == PID_MUON && L2_TRUEID == -L1_TRUEID) { TLorentzVector reconstructed_Kstar{}; bool found_k_star = false; if (TMath::Abs(Hp_TRUEID) == PID_KAON && TMath::Abs(Hm_TRUEID) == PID_PION) { reconstructed_Kstar = hp4v_sim->LorentzVector(K_MASS) + hm4v_sim->LorentzVector(); found_k_star = true; } else if (TMath::Abs(Hp_TRUEID) == PID_PION && TMath::Abs(Hm_TRUEID) == PID_KAON) { reconstructed_Kstar = hp4v_sim->LorentzVector() + hm4v_sim->LorentzVector(K_MASS); found_k_star = true; } if (found_k_star) { Double_t reconstructed_B_Mass = (reconstructed_Kstar + l14v_sim->LorentzVector() + l24v_sim->LorentzVector()).M(); if (std::all_of(vars.begin(), vars.end(), [](TV *v) { return v->IsMCFinite(); })) { if (retrain_bdt) { sig_tree->Fill(); } h1_B_Mass_sim->Fill(reconstructed_B_Mass); } } } PrintProgress(TString::Format("%s SIG Collection", analysis_name), sim_entries, 10000, i); } if (retrain_bdt) { TrainBDT(vars, analysis_name, sig_tree, bkg_tree); std::cout << "# Finished BDT retrain." << std::endl; } std::cout << "# Starting evaluation of data." << std::endl; Float_t *train_vars = new Float_t[vars.size()]; auto reader = SetupReader(vars, train_vars, analysis_name); const double mva_cut_value = -0.12; for (unsigned int i = 0; i < data_entries; i++) { data_chain->GetEntry(i); TLorentzVector dimuon = l14v_data->LorentzVector() + l24v_data->LorentzVector(); TLorentzVector reconstructed_Kstar{}; bool found_k_star = false; if (Hp_PID_K > 0 && Hm_PID_K < 0) { reconstructed_Kstar = hp4v_data->LorentzVector(K_MASS) + hm4v_data->LorentzVector(); found_k_star = true; } else if (Hm_PID_K > 0 && Hp_PID_K < 0) { reconstructed_Kstar = hp4v_data->LorentzVector() + hm4v_data->LorentzVector(K_MASS); found_k_star = true; } if (found_k_star) { Double_t reconstructed_B_Mass = (reconstructed_Kstar + dimuon).M(); if (std::all_of(vars.begin(), vars.end(), [](TV *v) { return v->IsDataFinite(); })) { for (size_t j = 0; j < vars.size(); j++) { if (vars[j]->IsDouble()) { train_vars[j] = vars[j]->GetDataDouble(); } else if (vars[j]->IsFloat()) { train_vars[j] = vars[j]->GetDataFloat(); } } } if (TMath::Abs(dimuon.M() - JPSI_MASS) < 100.) { CheckHlt1Decisioins(h2_Hlt1_flags_B_Mass, h2_Hlt1_flags_excl_B_Mass, exclusive_hits, reconstructed_B_Mass); FillHlt1DecisionHistos(hlt1_decision_histos, reconstructed_B_Mass); } double mva_response = reader->EvaluateMVA("BDT"); h1_bdt_probs->Fill(mva_response); if (mva_response > mva_cut_value) { if (TMath::Abs(reconstructed_Kstar.M() - KSTAR_MASS) < 100.) { if (TMath::Abs(dimuon.M() - JPSI_MASS) < 100.) { h1_B_Mass_jpsi->Fill(reconstructed_B_Mass); } else if (TMath::Abs(dimuon.M() - PSI2S_MASS) < 100.) { h1_B_Mass_psi2s->Fill(reconstructed_B_Mass); } } } } PrintProgress(TString::Format("%s BDT Evaluation", analysis_name), data_entries, 10000, i); } std::cout << "# Exclusive Hits" << std::endl; for (const auto &[line, hits] : exclusive_hits) { std::cout << line << ": " << hits << std::endl; } // DrawInDefaultCanvas(h2_Hlt1_flags_B_Mass, analysis_name, 0.16, "COLZ"); // DrawInDefaultCanvas(h2_Hlt1_flags_excl_B_Mass, analysis_name, 0.16, "COLZ"); DrawInDefaultCanvas(h1_B_Mass_jpsi, analysis_name, 0.1); DrawInDefaultCanvas(h1_B_Mass_psi2s, analysis_name, 0.1); auto roofit_hist_sim = CreateRooFitHistogramAndFitCB(h1_B_Mass_sim, false, false, ShapeParamters{}); auto roofit_hist_jpsi_fitsum = CreateRooFitHistogramAndFitCB(h1_B_Mass_jpsi, true, true, roofit_hist_sim.shape_parameters); auto roofit_hist_psi2s_fitsum = CreateRooFitHistogramAndFitCB(h1_B_Mass_psi2s, true, true, roofit_hist_sim.shape_parameters); DrawInDefaultCanvas(roofit_hist_jpsi_fitsum, analysis_name); DrawInDefaultCanvas(roofit_hist_psi2s_fitsum, analysis_name); DrawInDefaultCanvas(roofit_hist_sim, analysis_name); // DrawHlt1DecisionHistos(analysis_name, hlt1_decision_histos); DrawBDTProbs(h1_bdt_probs, mva_cut_value, analysis_name); return 0; }