#include "TH1D.h" #include "TH2D.h" #include "THStack.h" #include "TGraph.h" #include "TTree.h" #include "TChain.h" #include "TFile.h" #include "TCanvas.h" #include "TROOT.h" #include "TStyle.h" #include "TColor.h" #include "TLorentzVector.h" #include "TRandom3.h" #include "TLorentzVector.h" #include "TMVA/Factory.h" #include "TMVA/DataLoader.h" #include "TMVA/Reader.h" #include "RooDataHist.h" #include "RooRealVar.h" #include "RooPlot.h" #include "RooGaussian.h" #include "RooExponential.h" #include "RooRealConstant.h" #include "RooAddPdf.h" #include "RooFitResult.h" #include "RooProduct.h" #include "RooCrystalBall.h" #include #include #include const bool TRAIN_TMVA = false; const bool EVALUATE_TMVA = true; const int N_BINS = 130; const double B_PLUS_MASS = 5279.; const double J_PSI_MASS = 3096.; RooPlot *CreateRooFit(TH1D *hist); bool inRange(double value, double center, double low_intvl, double up_intvl) { return center - low_intvl < value && value < center + up_intvl; } bool inRange(double value, double center, double intvl) { return inRange(value, center, intvl, intvl); } class FourVector { private: Float_t px; Float_t py; Float_t pz; Float_t energy; public: TLorentzVector LV() { return TLorentzVector(px, py, pz, energy); } void Print() { std::cout << TString::Format("(PX: %f, PY: %f, PZ: %f, E: %f)", px, py, pz, energy) << std::endl; } void Connect(TChain* chain, std::string name) { chain->SetBranchAddress(TString::Format("%s_PX", name.c_str()), &px); chain->SetBranchAddress(TString::Format("%s_PY", name.c_str()), &py); chain->SetBranchAddress(TString::Format("%s_PZ", name.c_str()), &pz); chain->SetBranchAddress(TString::Format("%s_ENERGY", name.c_str()), &energy); } }; enum TVT { Double, Float, Int }; class TV { private: std::string data_name; std::string mc_name; std::string train_name; TVT type; Double_t mc_double_value; Float_t mc_float_value; Double_t data_double_value; Float_t data_float_value; TV(std::string data_name, std::string mc_name, std::string train_name, TVT type) : data_name{data_name}, mc_name{mc_name}, train_name{train_name}, type{type} { } public: static TV Float(std::string data_name, std::string mc_name, std::string train_name) { return TV(data_name, mc_name, train_name, TVT::Float); } static TV Float(std::string data_name, std::string mc_name) { return TV(data_name, mc_name, data_name, TVT::Float); } static TV Float(std::string data_name) { return TV(data_name, data_name, data_name, TVT::Float); } static TV Double(std::string data_name, std::string mc_name, std::string train_name) { return TV(data_name, mc_name, train_name, TVT::Double); } static TV Double(std::string data_name, std::string mc_name) { return TV(data_name, mc_name, data_name, TVT::Double); } static TV Double(std::string data_name) { return TV(data_name, data_name, data_name, TVT::Double); } const char *GetDataName() { return data_name.c_str(); } const char *GetMCName() { return mc_name.c_str(); } const char *GetTrainName() { return train_name.c_str(); } Double_t *GetMCDoubleRef() { return &mc_double_value; } Float_t *GetMCFloatRef() { return &mc_float_value; } Double_t *GetDataDoubleRef() { return &data_double_value; } Float_t *GetDataFloatRef() { return &data_float_value; } Double_t GetDataDouble() { return data_double_value; } Float_t GetDataFloat() { return data_float_value; } void PrintDataValue(int entry) { std::cout << data_name << " (" << entry << "): "; if (IsDouble()) { std::cout << data_double_value; } else if (IsFloat()) { std::cout << data_float_value; } std::cout << std::endl; } void PrintMCValue(int entry) { std::cout << mc_name << " (" << entry << "): "; if (IsDouble()) { std::cout << mc_double_value; } else if (IsFloat()) { std::cout << mc_float_value; } std::cout << std::endl; } bool IsDataFinite() { if (IsDouble()) { return std::isfinite(data_double_value); } else if (IsFloat()) { return std::isfinite(data_float_value); } return false; } bool IsMCFinite() { if (IsDouble()) { return std::isfinite(mc_double_value); } else if (IsFloat()) { return std::isfinite(mc_float_value); } return false; } bool IsDouble() { return type == TVT::Double; } bool IsFloat() { return type == TVT::Float; } }; int train_bdt() { std::cout << TString::Format("Starting Up With TRAIN_TMVA=%d AND EVALUATE_TMVA=%d.", TRAIN_TMVA, EVALUATE_TMVA) << std::endl; // files to load std::vector data_filenames = { "/auto/data/pfeiffer/inclusive_detached_dilepton/data_samples/BuToKpMuMu_Collision23_Beam6800GeV-VeloClosed-MagDown-Excl-UT_RealData_Sprucing23r1_90000000_RD.root"}; TChain *data_chain = new TChain("SpruceRD_BuToKpMuMu/DecayTree"); for (unsigned int i = 0; i < data_filenames.size(); i++) { data_chain->Add(data_filenames.at(i).c_str()); } // files to load std::vector mc_filenames = { "/auto/data/pfeiffer/inclusive_detached_dilepton/MC/BuToKpMuMu_rd_btoxll_simulation_12143001_MagDown_v0r0p6316365_FULLSTREAM.root"}; TChain *mc_chain = new TChain("BuToKpMuMu_noPID/DecayTree"); for (unsigned int i = 0; i < mc_filenames.size(); i++) { mc_chain->Add(mc_filenames.at(i).c_str()); } std::vector vars{ TV::Float("Bplus_PT", "B_PT"), TV::Float("Bplus_BPVFDCHI2", "B_BPVFDCHI2"), TV::Float("Bplus_BPVDIRA", "B_BPVDIRA"), TV::Float("Jpsi_BPVIPCHI2", "Jpsi_BPVIPCHI2"), TV::Float("Jpsi_BPVDIRA", "Jpsi_BPVDIRA"), TV::Float("Jpsi_PT", "Jpsi_PT"), TV::Float("Kplus_BPVIPCHI2", "K_BPVIPCHI2"), TV::Float("Kplus_PT", "K_PT"), // TV::Double("Kplus_PID_K", "K_PID_K"), TV::Double("Kplus_PROBNN_K", "K_PROBNN_K"), TV::Float("muplus_BPVIPCHI2", "L1_BPVIPCHI2"), TV::Float("muminus_BPVIPCHI2", "L2_BPVIPCHI2"), }; TTree *sig_tree = new TTree("TreeS", "tree containing signal data"); TTree *bkg_tree = new TTree("TreeB", "tree containing background data"); Double_t Bplus_M, B_M, K_PID_K; data_chain->SetBranchAddress("Bplus_M", &Bplus_M); mc_chain->SetBranchAddress("B_M", &B_M); mc_chain->SetBranchAddress("K_PID_K", &K_PID_K); FourVector muplus_4v, muminus_4v; muplus_4v.Connect(mc_chain, "L1"); muminus_4v.Connect(mc_chain, "L2"); for (size_t i = 0; i < vars.size(); i++) { if (vars[i].IsDouble()) { data_chain->SetBranchAddress(vars[i].GetDataName(), vars[i].GetDataDoubleRef()); mc_chain->SetBranchAddress(vars[i].GetMCName(), vars[i].GetMCDoubleRef()); sig_tree->Branch(vars[i].GetTrainName(), vars[i].GetMCDoubleRef(), TString::Format("%s/D", vars[i].GetTrainName())); bkg_tree->Branch(vars[i].GetTrainName(), vars[i].GetDataDoubleRef(), TString::Format("%s/D", vars[i].GetTrainName())); } else if (vars[i].IsFloat()) { data_chain->SetBranchAddress(vars[i].GetDataName(), vars[i].GetDataFloatRef()); mc_chain->SetBranchAddress(vars[i].GetMCName(), vars[i].GetMCFloatRef()); sig_tree->Branch(vars[i].GetTrainName(), vars[i].GetMCFloatRef(), TString::Format("%s/F", vars[i].GetTrainName())); bkg_tree->Branch(vars[i].GetTrainName(), vars[i].GetDataFloatRef(), TString::Format("%s/F", vars[i].GetTrainName())); } } unsigned int data_entries = data_chain->GetEntries(); unsigned int mc_entries = mc_chain->GetEntries(); if (TRAIN_TMVA) { std::cout << "----- Start TMVA Setup -----" << std::endl; std::cout << "----- Setting Up Signal and Background Tree -----" << std::endl; unsigned int added_bck_entries = 0; unsigned int added_sig_entries = 0; std::cout << "----- Processing Data -----" << std::endl; for (unsigned int i = 0; i < data_entries; i++) { data_chain->GetEntry(i); bool skip = false; for (size_t j = 0; j < vars.size(); j++) { if (!vars[j].IsDataFinite()) { vars[j].PrintDataValue(i); skip = true; } } if (skip) { continue; } if (Bplus_M > 5500.) { bkg_tree->Fill(); added_bck_entries++; } } std::cout << "----- Processing Simulation -----" << std::endl; for (unsigned int i = 0; i < mc_entries; i++) { mc_chain->GetEntry(i); bool skip = false; for (size_t j = 0; j < vars.size(); j++) { if (!vars[j].IsMCFinite()) { vars[j].PrintMCValue(i); skip = true; } } Double_t mumu_inv_mass = (muplus_4v.LV() + muminus_4v.LV()).M(); if (skip || !inRange(B_M, B_PLUS_MASS, 100.) || !inRange(mumu_inv_mass, J_PSI_MASS, 100.) || K_PID_K < 0.) { continue; } sig_tree->Fill(); added_sig_entries++; if (added_sig_entries >= added_bck_entries * 2) { break; } } std::cout << "----- Start TMVA Training -----" << std::endl; std::cout << TString::Format("With %d Signal and %d Background Events.", added_sig_entries, added_bck_entries) << std::endl; TString outfile_name("tmva_butokpmumu_out.root"); TFile *output_file = TFile::Open(outfile_name, "RECREATE"); TString factory_options("V:Silent:Color:DrawProgressBar:Transformations=I;D;P;G,D:AnalysisType=Auto"); TMVA::Factory *factory = new TMVA::Factory("tmva_butokpmumu", output_file, factory_options); TMVA::DataLoader *data_loader = new TMVA::DataLoader("dataloader"); for (int i = 0; i < vars.size(); i++) { std::cout << "Adding Branch: " << vars[i].GetTrainName() << std::endl; if (vars[i].IsDouble()) { data_loader->AddVariable(vars[i].GetTrainName(), 'D'); } else if (vars[i].IsFloat()) { data_loader->AddVariable(vars[i].GetTrainName(), 'F'); } } Double_t signal_weight = 1.0, background_weight = 1.0; data_loader->AddSignalTree(sig_tree, signal_weight); data_loader->AddBackgroundTree(bkg_tree, background_weight); data_loader->PrepareTrainingAndTestTree("", "", "nTrain_Signal=0:nTrain_Background=0:SplitMode=Random:NormMode=NumEvents:!V"); factory->BookMethod(data_loader, TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=600:MinNodeSize=2.5%:CreateMVAPdfs:MaxDepth=3:BoostType=AdaBoost:AdaBoostBeta=0.5:UseBaggedBoost:BaggedSampleFraction=0.5:SeparationType=GiniIndex:nCuts=20"); factory->TrainAllMethods(); factory->TestAllMethods(); factory->EvaluateAllMethods(); output_file->Close(); std::cout << "----- Finished TMVA Setup & Training -----" << std::endl; } else { std::cout << "----- Skipped TMVA Setup & Training -----" << std::endl; } if (EVALUATE_TMVA) { std::cout << "----- Start TMVA Evaluation of Data -----" << std::endl; TMVA::Reader *reader = new TMVA::Reader("!Color:!Silent"); Float_t *train_vars = new Float_t[vars.size()]; for (size_t i = 0; i < vars.size(); i++) { reader->AddVariable(vars[i].GetTrainName(), &train_vars[i]); } reader->BookMVA("BDT", "./dataloader/weights/tmva_butokpmumu_BDT.weights.xml"); TH1D *h1_probs = new TH1D("h1_probs", "BDT Probabilities", N_BINS, -1, 1); TH1D *h1_Bplus_M = new TH1D("h1_Bplus_M", "B^{+} Mass", N_BINS, 4700., 6500.); for (unsigned int i = 0; i < data_entries; i++) { data_chain->GetEntry(i); bool skip = false; for (size_t j = 0; j < vars.size(); j++) { if (!vars[j].IsDataFinite()) { vars[j].PrintDataValue(i); skip = true; break; } if (vars[j].IsDouble()) { train_vars[j] = vars[j].GetDataDouble(); } else if (vars[j].IsFloat()) { train_vars[j] = vars[j].GetDataFloat(); } } if (skip) { continue; } double mva_response = reader->EvaluateMVA("BDT"); h1_probs->Fill(mva_response); const double mva_cut_value = 0.09; // -0.02; if (mva_response > mva_cut_value) { h1_Bplus_M->Fill(Bplus_M); } } std::cout << "----- Finished TMVA Evaluation of Data -----" << std::endl; TCanvas *c1 = new TCanvas("c1", "c1", 0, 0, 1200, 800); c1->Divide(2, 1); c1->cd(1); h1_probs->Draw(); c1->cd(2); h1_Bplus_M->Draw(); c1->Draw(); TCanvas *c3 = new TCanvas("c3", "Canvas 3", 0, 0, 1000, 600); auto fitFrame = CreateRooFit(h1_Bplus_M); fitFrame->Draw(); c3->Draw(); } else { std::cout << "----- Skipped TMVA Evaluation of Data -----" << std::endl; } return 0; } RooPlot *CreateRooFit(TH1D *hist) { RooRealVar roo_var_mass("roo_var_mass", "B+ Mass Variable", 4700., 6500.); roo_var_mass.setRange("fitting_range", 4800., 5800.); roo_var_mass.setRange("plot_range", 4700., 6500.); TString hist_name = "roohist_bplus_M"; RooDataHist roohist_bplus_M(hist_name, "B Plus Mass Histogram", roo_var_mass, RooFit::Import(*hist)); RooRealVar roo_sig_gauss_mean("roo_sig_gauss_mean", "Mass Gauss Mean", 5250., 5100., 5400.); RooRealVar roo_sig_gauss_sigma("roo_sig_gauss_sigma", "Mass Gauss Sigma", 30., 20., 40.); RooGaussian roo_sig_gauss("roo_sig_gauss", "B+ Mass Signal Gaussian", roo_var_mass, roo_sig_gauss_mean, roo_sig_gauss_sigma); // Crystal Ball for Signal // RooRealVar roo_sig_cb_x0("roo_sig_cry_x0", "Location", B_PLUS_MASS, 5100., 5400.); // RooRealVar roo_sig_cb_sigmaL("roo_sig_cry_sigmaL", "Sigma L", 30., 0., 60.); // RooRealVar roo_sig_cb_sigmaR("roo_sig_cry_sigmaR", "Sigma R", 30., 0., 60.); // RooRealVar roo_sig_cb_alphaL("roo_sig_cry_alphaL", "Alpha L", 15., 0., 30.); // RooRealVar roo_sig_cb_nL("roo_sig_cry_nL", "Exponent L", 0., -40., 40.); // RooRealVar roo_sig_cb_alphaR("roo_sig_cry_alphaR", "Alpha R", 15., 0., 30.); // RooRealVar roo_sig_cb_nR("roo_sig_cry_nR", "Exponent R", 0., -40., 40.); // RooCrystalBall roo_sig_cb("roo_sig_cb", "Signal Crystal Ball", roo_var_mass, roo_sig_cb_x0, roo_sig_cb_sigmaL, roo_sig_cb_sigmaR, roo_sig_cb_alphaL, roo_sig_cb_nL, roo_sig_cb_alphaR, roo_sig_cb_nR); // Double Gauss Signal // RooRealVar roo_sig_gauss1_mean("roo_sig_gauss1_mean", "Mass Gauss 1 Mean", 5250., 5200., 5300.); // RooRealVar roo_sig_gauss1_sigma("roo_sig_gauss1_sigma", "Mass Gauss 1 Sigma", 60., 0., 150.); // RooGaussian roo_sig_gauss1("roo_sig_gauss1", "B+ Mass Signal 1 Gaussian", roo_var_mass, roo_sig_gauss1_mean, roo_sig_gauss1_sigma); // RooRealVar roo_sig_gauss2_mean("roo_sig_gauss2_mean", "Mass Gauss 2 Mean", 5250., 5200., 5300.); // RooRealVar roo_sig_gauss2_sigma("roo_sig_gauss2_sigma", "Mass Gauss 2 Sigma", 60., 0., 150.); // RooGaussian roo_sig_gauss2("roo_sig_gauss2", "B+ Mass Signal 2 Gaussian", roo_var_mass, roo_sig_gauss2_mean, roo_sig_gauss2_sigma); // RooRealVar roo_sig_double_gauss_frac("roo_sig_double_gauss_frac", "B+ Mass Signal Double Gauss Frac", 0.5); // RooAddPdf roo_sig_double_gauss("roo_sig_double_gauss", "B+ Mass Signal Double Gauss", roo_sig_gauss1, roo_sig_gauss2, roo_sig_double_gauss_frac); RooRealVar roo_bkg_exp_c("roo_bkg_exp_c", "Background C", -0.000693147, -0.002, 0.); RooExponential roo_bkg_exp("roo_bkg_exp", "B+ Mass Background Exp", roo_var_mass, roo_bkg_exp_c); RooRealVar roo_var_mass_nsig("roo_var_mass_nsig", "B+ Mass N Signal", 0., hist->GetEntries()); RooRealVar roo_var_mass_nbkg("roo_var_mass_nbkg", "B+ Mass N Background", 0., hist->GetEntries()); TString pdf_name = "roo_pdf_sig_plus_bkg"; RooAddPdf roo_pdf_sig_plus_bkg(pdf_name, "Sig + Bkg PDF", RooArgList(roo_sig_gauss, roo_bkg_exp), RooArgList(roo_var_mass_nsig, roo_var_mass_nbkg)); RooPlot *roo_frame_mass = roo_var_mass.frame(); roohist_bplus_M.plotOn(roo_frame_mass, RooFit::Binning(N_BINS), RooFit::Name(hist_name), RooFit::MarkerColor(15), RooFit::Range("plot_range")); RooFitResult *fitres = roo_pdf_sig_plus_bkg.fitTo(roohist_bplus_M, RooFit::Save(), RooFit::PrintLevel(1), RooFit::Range("fitting_range")); roo_pdf_sig_plus_bkg.plotOn(roo_frame_mass, RooFit::VisualizeError(*fitres, 1), RooFit::Range("plot_range"), RooFit::FillColor(kOrange + 1), RooFit::FillStyle(3144)); roo_pdf_sig_plus_bkg.plotOn(roo_frame_mass, RooFit::LineColor(kRed), RooFit::LineStyle(kSolid), RooFit::Range("plot_range"), RooFit::Name(pdf_name)); roo_pdf_sig_plus_bkg.plotOn(roo_frame_mass, RooFit::Components(RooArgSet(roo_bkg_exp)), RooFit::LineColor(kBlue), RooFit::LineStyle(kDashed), RooFit::Range("plot_range")); // roo_sig_cb.plotOn(roo_frame_mass, RooFit::LineColor(kAlpine), RooFit::LineStyle(kDashed), RooFit::Range("fitting_range")); // roo_bkg_exp.plotOn(roo_frame_mass, RooFit::LineColor(kOrange), RooFit::LineStyle(kDashed), RooFit::Range("fitting_range")); roo_sig_gauss.paramOn(roo_frame_mass, RooFit::Layout(0.60, 0.99, 0.90)); roo_frame_mass->getAttText()->SetTextSize(0.027); double ymax = roo_frame_mass->GetMaximum(); TText *txt_n_sig = new TText(5800., ymax * 0.22, TString::Format("Signal Yield: %.2f +/- %.2f (Paper: %s)", roo_var_mass_nsig.getVal(), roo_var_mass_nsig.getError(), "")); txt_n_sig->SetTextSize(0.027); txt_n_sig->SetTextColor(kBlue + 4); TText *txt_n_bkg = new TText(5800., ymax * 0.18, TString::Format("Background Yield: %.2f +/- %.2f", roo_var_mass_nbkg.getVal(), roo_var_mass_nbkg.getError())); txt_n_bkg->SetTextSize(0.027); txt_n_bkg->SetTextColor(kBlue + 4); roo_frame_mass->addObject(txt_n_sig); roo_frame_mass->addObject(txt_n_bkg); return roo_frame_mass; }