{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import matplotlib.animation as animation\n", "import numpy as np\n", "from scipy import constants as const\n", "\n", "import sys\n", "sys.path.append('C:/Users/naeve/FerDy-Repo/clean_diag/backend')\n", "\n", "import trap_units as si\n", "from twod_trap import DoubleTweezer" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "initial_power = 50* si.uW\n", "initial_waist = 1.1*si.uW\n", "initial_distance = 2*si.um\n", "\n", "trap: DoubleTweezer = DoubleTweezer(\n", " power=0, # Set pancake laser power to 0, no 2D trap\n", " grad_z= 0*si.G/si.cm,\n", " grad_r=0,\n", " power_tweezer1 = initial_power, #stationary\n", " power_tweezer2 = initial_power, #transfer tweezer\n", " waist_tweezer1 = initial_waist, #stationary\n", " waist_tweezer2 = initial_waist, #transfer tweezer\n", " distance_tweezers = initial_distance,\n", "\n", " a=180*(4 * np.pi * const.epsilon_0 * const.value(\"Bohr radius\")**3)/(2 * const.epsilon_0 * const.c),\n", " wvl = 532 * si.nm,\n", "\n", " g = 0,\n", ")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "ename": "FileNotFoundError", "evalue": "[Errno 2] No such file or directory: 'data/test_3D.npz'", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", "Cell \u001b[1;32mIn[3], line 25\u001b[0m\n\u001b[0;32m 23\u001b[0m x3D,y3D,z3D \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mmeshgrid(coords[trap\u001b[38;5;241m.\u001b[39mx],coords[trap\u001b[38;5;241m.\u001b[39my],coords[trap\u001b[38;5;241m.\u001b[39mz],indexing\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mij\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m 24\u001b[0m pot \u001b[38;5;241m=\u001b[39m potential(x3D,y3D,z3D)\n\u001b[1;32m---> 25\u001b[0m np\u001b[38;5;241m.\u001b[39msavez(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdata/test_3D.npz\u001b[39m\u001b[38;5;124m\"\u001b[39m,energies\u001b[38;5;241m=\u001b[39menergies, states\u001b[38;5;241m=\u001b[39mstates, pot\u001b[38;5;241m=\u001b[39mpot, x\u001b[38;5;241m=\u001b[39mcoords[trap\u001b[38;5;241m.\u001b[39mx],y\u001b[38;5;241m=\u001b[39mcoords[trap\u001b[38;5;241m.\u001b[39my],z\u001b[38;5;241m=\u001b[39mcoords[trap\u001b[38;5;241m.\u001b[39mz])\n", "File \u001b[1;32mc:\\Users\\naeve\\anaconda3\\Lib\\site-packages\\numpy\\lib\\npyio.py:639\u001b[0m, in \u001b[0;36msavez\u001b[1;34m(file, *args, **kwds)\u001b[0m\n\u001b[0;32m 555\u001b[0m \u001b[38;5;129m@array_function_dispatch\u001b[39m(_savez_dispatcher)\n\u001b[0;32m 556\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21msavez\u001b[39m(file, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwds):\n\u001b[0;32m 557\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Save several arrays into a single file in uncompressed ``.npz`` format.\u001b[39;00m\n\u001b[0;32m 558\u001b[0m \n\u001b[0;32m 559\u001b[0m \u001b[38;5;124;03m Provide arrays as keyword arguments to store them under the\u001b[39;00m\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 637\u001b[0m \n\u001b[0;32m 638\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[1;32m--> 639\u001b[0m _savez(file, args, kwds, \u001b[38;5;28;01mFalse\u001b[39;00m)\n", "File \u001b[1;32mc:\\Users\\naeve\\anaconda3\\Lib\\site-packages\\numpy\\lib\\npyio.py:736\u001b[0m, in \u001b[0;36m_savez\u001b[1;34m(file, args, kwds, compress, allow_pickle, pickle_kwargs)\u001b[0m\n\u001b[0;32m 733\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 734\u001b[0m compression \u001b[38;5;241m=\u001b[39m zipfile\u001b[38;5;241m.\u001b[39mZIP_STORED\n\u001b[1;32m--> 736\u001b[0m zipf \u001b[38;5;241m=\u001b[39m zipfile_factory(file, mode\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mw\u001b[39m\u001b[38;5;124m\"\u001b[39m, compression\u001b[38;5;241m=\u001b[39mcompression)\n\u001b[0;32m 738\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m key, val \u001b[38;5;129;01min\u001b[39;00m namedict\u001b[38;5;241m.\u001b[39mitems():\n\u001b[0;32m 739\u001b[0m fname \u001b[38;5;241m=\u001b[39m key \u001b[38;5;241m+\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m.npy\u001b[39m\u001b[38;5;124m'\u001b[39m\n", "File \u001b[1;32mc:\\Users\\naeve\\anaconda3\\Lib\\site-packages\\numpy\\lib\\npyio.py:103\u001b[0m, in \u001b[0;36mzipfile_factory\u001b[1;34m(file, *args, **kwargs)\u001b[0m\n\u001b[0;32m 101\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mzipfile\u001b[39;00m\n\u001b[0;32m 102\u001b[0m kwargs[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mallowZip64\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m--> 103\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m zipfile\u001b[38;5;241m.\u001b[39mZipFile(file, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n", "File \u001b[1;32mc:\\Users\\naeve\\anaconda3\\Lib\\zipfile\\__init__.py:1331\u001b[0m, in \u001b[0;36mZipFile.__init__\u001b[1;34m(self, file, mode, compression, allowZip64, compresslevel, strict_timestamps, metadata_encoding)\u001b[0m\n\u001b[0;32m 1329\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m \u001b[38;5;28;01mTrue\u001b[39;00m:\n\u001b[0;32m 1330\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m-> 1331\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfp \u001b[38;5;241m=\u001b[39m io\u001b[38;5;241m.\u001b[39mopen(file, filemode)\n\u001b[0;32m 1332\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mOSError\u001b[39;00m:\n\u001b[0;32m 1333\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m filemode \u001b[38;5;129;01min\u001b[39;00m modeDict:\n", "\u001b[1;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'data/test_3D.npz'" ] } ], "source": [ "n_pot_steps = [30,30,30]\n", "n_levels = 8\n", "\n", "left_cutoff = -0.5*initial_distance-2*np.max([float(trap.subs(trap.waist_tweezer1)),float(trap.subs(trap.waist_tweezer2))])\n", "right_cutoff = 0.5*initial_distance+2*np.max([float(trap.subs(trap.waist_tweezer1)),float(trap.subs(trap.waist_tweezer2))])\n", "back_cutoff = -2*np.max([float(trap.subs(trap.waist_tweezer1)),float(trap.subs(trap.waist_tweezer2))])\n", "front_cutoff = 2*np.max([float(trap.subs(trap.waist_tweezer1)),float(trap.subs(trap.waist_tweezer2))])\n", "bottom_cutoff = -2*np.max([float(trap.subs(trap.get_tweezer_rayleigh1())),float(trap.subs(trap.get_tweezer_rayleigh2()))])\n", "top_cutoff = 2*np.max([float(trap.subs(trap.get_tweezer_rayleigh1())),float(trap.subs(trap.get_tweezer_rayleigh2()))])\n", "\n", "extend = [(left_cutoff,right_cutoff),\n", " (back_cutoff,front_cutoff),\n", " (bottom_cutoff,top_cutoff)]\n", "\n", "\n", "# Solve the hamiltonian numerically\n", "energies, states, potential, coords = trap.nstationary_solution(\n", " [trap.x,trap.y,trap.z], extend, n_pot_steps, k=n_levels)\n", "\n", "x = coords[trap.x]\n", "y = coords[trap.y]\n", "z = coords[trap.z]\n", "x3D,y3D,z3D = np.meshgrid(coords[trap.x],coords[trap.y],coords[trap.z],indexing=\"ij\")\n", "pot = potential(x3D,y3D,z3D)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\naeve\\AppData\\Local\\Temp\\ipykernel_13844\\1690377931.py:34: MatplotlibDeprecationWarning: The collections attribute was deprecated in Matplotlib 3.8 and will be removed in 3.10.\n", " for c in contour.collections:\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAHFCAYAAADL3j9BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADzZElEQVR4nOydd1hUx/rHv9tZOiy9F2nSxYa9K6Kxa+wa026MuYnJTWKSq7mmmN4TE6Ox996wYAFsCCIgRXrvvcPusru/PxB+qKhnzu6ygOfzPPvcm2Vmziwu5z0z877fL0uhUCjAwMDAwMCgJtiangADAwMDQ9+GCTQMDAwMDGqFCTQMDAwMDGqFCTQMDAwMDGqFCTQMDAwMDGqFCTQMDAwMDGqFCTQMDAwMDGqFCTQMDAwMDGqFCTQMDAwMDGqFCTQM3U5SUhLeeOMNBAYGQkdHBywWC2FhYc/sV1paCpFIBBaLhSNHjjyzfVpaGt577z0EBATA0NAQxsbGGD58+BP7XrhwAcOHD4dQKISBgQGmT5+OpKSkx9qdOXMGy5Ytg7e3N3g8Hlgs1jPnwsDwPMMEGoZu586dOzhx4gSMjY0xfvx4yv1Wr14NLS0tyu0vXryIs2fPYs6cOTh8+DD27t0LFxcXzJs3Dxs3bnyo7cmTJxEUFAQzMzMcPXoUf/75J9LT0zFy5EhkZmY+1Pb48eOIjIxE//794evrS3k+DAzPLQoGhm5GJpN1/P/Dhw8rACiuXr361D5HjhxR6OrqKnbu3KkAoDh8+PAzr1NeXq6Qy+WPvR8cHKzQ1tZWtLS0dLzn5uam8PHxeah9Tk6Ogs/nKxYtWvTE+a9evVrB/BkxMDwdZkXD8ERYLNYTXzk5ObTHZbPJvnZVVVVYvXo1vvjiC9jZ2VHuZ2Ji0uW21uDBg9HU1ISqqioAQGVlJVJTUxEUFPRQe3t7e3h5eeHEiROQyWTE8//000+7vP6OHTse+x06ODhg2rRpOHPmDPz9/SEUCuHh4YEzZ8509PHw8ICOjg4GDx6MO3fuUJoDA0NPgKvpCTD0XG7duvXQfzc3N2Pp0qWQyWQwNjaGQqF46Ab8NLhc+l+1t956C46OjnjzzTcRERFBe5x2rl69ClNTU5iZmQEAJBIJAEAgEDzWViAQoKmpCZmZmXB1dVX62k8jPj4e69atw8cffwwDAwP873//w+zZs7Fu3TpcvnwZX375JVgsFj744ANMmzYN2dnZEAqFap0TA4MqYAINwxMZOnRox/+XyWSYM2cOamtrER4eDn19fezYsQMrV66kNJaCphvF2bNncejQIdy9e5d4JdQVW7duRVhYGH7++WdwOBwAgLm5OYyNjXHjxo2H2tbU1CAxMRFA26pH3VRWViIyMhLW1tYAACsrK/j5+eHvv/9GRkYGtLW1AbStNGfOnIlLly5h+vTpap8XA4OyPJeBJiIiAt9++y1iYmJQXFyM48ePY+bMmWq9ZmFhIT744AOcO3cOzc3NcHV1xbZt2xAQEKDW66qKN998E2fPnsXp06cxYMAAAMD06dMRHR2ttmvW1tbitddewwcffAAvLy+lxzt37hxWr16NuXPnYs2aNR3vs9lsrF69Gp999hk+++wzvPbaa6irq8Pbb7+Npqamjjbqxs/PryPIAICHhwcAYMyYMR1BpvP7ubm5ap8TA4MqeC4DTWNjI3x9fbFy5UrMmTNH7derrq7G8OHDMXbsWJw7dw5mZmbIzMyEoaGh2q+tCj7//HP8+eef2LZtG6ZMmdLxvrGxMQwMDNR23Y8//hg8Hg9vvvkmampqAAANDQ0AgKamJtTU1MDAwIBSevGFCxcwe/ZsTJw4EXv37n2sz/r169HQ0IDPP/8c69evBwAEBwdj5cqV2Lp160MBQF0YGxs/9N98Pv+p77e0tKh9TgwMquC5DDRBQUEICgp64s8lEgk++eQT7N27FzU1NfDy8sLXX3+NMWPG0Lre119/DVtbW2zfvr3jPQcHB1pjdTc7duzAf//7X3z66ad46aWXHvrZzp071bp1lpiYiJycHFhYWDz2s+XLlwNoC+LPCtgXLlzAzJkzMXr0aBw9erTjRt0ZLpeLH374ARs3bkR2djZMTExgaWmJyZMnw9HRETY2NsTzb0/FFovFD53/VFRUEI/FwNCbeS4DzbNYuXIlcnJycODAAVhZWeH48eOYMmUKEhIS4OLiQjzeqVOnMHnyZMybNw/h4eGwtrbGG2+8gVdeeUUNs1cd58+fxyuvvIKXXnoJGzZseOzn6t46++mnnzpWMu3ExcXhnXfewaefforRo0dDV1f3qWNcvHgRM2fOxIgRI3DixIkuD/w7o6urC29vbwDA3bt3cfnyZXz//fe05t/+MHHv3j0MGjSo4/3Tp0/TGo+BobfCBJpHyMzMxP79+1FQUAArKysAwHvvvYfz589j+/bt+PLLL4nHzMrKwubNm7F27Vp89NFHiIqKwltvvQWBQIBly5ap+iOohOzsbMybNw9OTk5YuXIlIiMjH/q5v78/RCIRRCIR8dhNTU0ICQkBgI5xw8PDUVFRAR0dnY7Vpp+f3xPH8PT0fGiFGR4ejvHjx2P9+vUdW1/Xr1/HzJkzYWFhgY8++ghxcXEPjdG/f3/o6+sDAMLCwhAdHQ0fHx8oFApERUXh66+/xpQpU/Dmm28+1C83N7cjwLYXc7arDTg4OGDgwIEAgKlTp8LY2BirVq3Cxo0bweVysWPHDuTn55P+yhgYejeaLePRPAAUx48f7/jvQ4cOKQAodHR0HnpxuVzF/PnzFQqFQpGdna0A8NTX6tWrO8bk8XiKwMDAh667Zs0axdChQ7vlM9Lh6tWrT/182dnZtMd+2u/P3t6e0rweLdhsf3/Dhg0d723YsOGpn6FzkeiNGzcUQ4YMUejr6ysEAoHCy8tL8d133ykkEsljc9i+ffsTx1y+fPlDbaOiohTDhg1T6OjoKKytrRUbNmxQbN269bHfob29vSI4OPixaz36Xer8+/v222+f+rtiYOgpsBQKmnmnfQQWi/VQ1tnBgwexePFiJCUldaS/tqOrqwsLCwtIpdLHZEkexcjICObm5gDaCv8mTpyIrVu3dvx88+bN+Pzzz1FYWKjaD8TAwMDQw2C2zh7B398fMpkMZWVlGDlyZJdteDwe3N3dKY85fPhwpKamPvReWloa7O3tlZorAwMDQ2/guQw0DQ0NyMjI6Pjv7OxsxMXFwdjYGK6urli8eDGWLVuG77//Hv7+/qioqMCVK1fg7e2NqVOnEl/vnXfewbBhw/Dll19i/vz5iIqKwpYtW7BlyxZVfiwGBgaGnomm9+40wZPOH9r31yUSiWL9+vUKBwcHBY/HU1hYWChmzZqluHfvHu1rnj59WuHl5aUQCAQKd3d3xZYtW1T0aRgYGBh6Ns/9GQ0DAwMDg3ph1JsZGBgYGNQKE2gYGBgYGNTKc5UMIJfLUVRUBD09PcZ+l4HhOUGhUKC+vh5WVlZqFUdtaWnpsJxQBj6fT+Qk2xt4rgJNUVERbG1tNT0NBgYGDZCfn09Ls44KLS0tcLTXRUkZNX+mp2FhYYHs7Ow+FWyeq0Cjp6cHALD59BOw+9A/4qNwWCzMdPPAqwMHIbakGP+9chlSufJ/AAy9GxaAMQ6OeHPwUPx5JwqhWU8vOu4ryFtaUPDp5x1//+pAIpGgpEyG3BgH6OvRXzXV1cthH5ADiUTCBJreSvt2GVtLq08GGhYALpuNITa2mObji7VhV3C/ohzg88AGT9PTY+gBhJcU49rpE2ABmOrljZluHvj+1g2kV6nf2E3TdMd2ua4eC7p69K8jR9/c0n+uAk1fZrS9A94bNgK74uNwODkR1/MYUyyGrpE/qGi4nJUJU20d7Jo1B9fycvHhpYsdP2Ogh0whh0yJX6FMIVfdZHoQTKDpA2yfMRvmOjr45uZ1hOVka3o6DL0EqVyO3fficCQ5EaMdHCFXKBDUzwXRRYWoeOAsykCGHArIQT/SKNO3J8OkN/dSdPl8LPb2BQB8c+MagvftZoIMAy2aW1txPiMdAOBuYoqQRcswx8NTw7Ni6EswK5peSKCNLb6eMBmXszPBYbHazmEYGFTAj5E3cSo1Bd9PmoImqQTnHgQgBmrIIYcym1/K9e659JoVzebNm+Hj4wN9fX3o6+sjMDAQ586d0/S0uh13ExN8NWES3r90Af8LvwoZs6fOoGIyq6sw59B+XMjMwCTnfpjm6qbpKfUaZAqF0q++SK8JNDY2Nvjqq69w584d3LlzB+PGjcOMGTOQlJSk6al1CwOtrLHQywcpFRWYuHsHIgsYl0YG9SFTKCBXKJBXW4N/DRyM36dOg7FQqOlpMfRSek2gmT59OqZOnQpXV1e4urriiy++gK6u7mMWw30NAYeLj0eOxk9TpqKwrhYAIJExNTEM3UNKRQVmHtiLzKoqvDU4UNPT6fG0JwMo8+qL9MozGplMhsOHD6OxsRGBgX37y7/YxwdGWkIE7dmFeolY09NheA6RyuX4IfImAMDFWIRXAgbi84gw1ImZ7+OjyKGAjMk6e4xeFWgSEhIQGBiIlpYW6Orq4vjx4+jfv/8T24vFYog7/THU1dV1xzRVwkv+A5BVXY1/Yu9qeio9Dj6HA5FQG8UN9XAyNIKfhSWMhUIYa2tjc3QUPExM8N6wEcCDAr3PI66ipqUF300K6hjjn9gYXMzMwM9TglHd3IzK5ibcLixAZEE+/Mwt0NzaisrmJlQ1NzO1JZ3Ira1BdXMzTi9cgjdDziChrFTTU2LoBfSqQOPm5oa4uDjU1NTg6NGjWL58OcLDw58YbDZt2oT//e9/3TxL5dDj8/HVhEkw09HFmyFnND0djcFhsWCppwcHQyMYCAQ4m56GlX4DsNzXHyJtbZQ3NmD8ru1wMjLGYBsbVDU3o+pB7Ud6VRW+vB4B+YPit+zqakjlcnwecbVj/KL6erAAnE5LgUgohLFQG9q8NvWElf4BcDIygkiojbiSYrwRchqvDxwMAYeD3JoapFdVIqm8rNt/Jz0BiUyGTdcjEFmQj7WBw7Hy5DFNT6lHwdTRdE2vNj6bMGECnJ2d8ddff3X5865WNLa2trD76vMeK0Hz2djxaGltxdc3rqFV3jdTHR9Fh8eDj7kF/CwsIeBy8VPkTfw8JRjeZmbIqa1BSkUFvrlxDTb6+lAoFCiqr++2P0cW2uxXxzk6ob+JKewMDdEslWJD2BV8PWEyPExMkVxehuiiQhy9/3wkpnTGUEsLa4cOx7c3r6FeBcrF6kDe0oK8Dz9BbW0t9PX11XKNuro6GBgYIO2+OfSU0Dqrr5fD1aNUrXPVBL1qRfMoCoXioUDyKAKBAAKBoBtnRJ8Vfv6IyMnBp2FX+myKIwCwWSy4ikTwM7cEl8PGnnvx+G5SEPQFAsSVFCOqsAAA8O/zZx/rW6CBrc/2f4kr2Vm4kp310M/+F34F9gaG8DY3h6WuLgBgw+ixcDcxRVxJMe4WFyM0K6ObZ9y9NEokEMtacWrhErx17iyzlcbQJb0m0Hz00UcICgqCra0t6uvrceDAAYSFheH8+fOanppSGAi08N2kKTAQCHA+I71PBhlTbR3YGhjgbnER9syaCyOhEHElxR16bP86e0rDM6RHk1SK+xXlDxXMfnvzOrzNzOFnYYmRdvYIzcrAG4MGw0pPH5eyMnEzP69PZQ1K5XJ8cS0ctwry8c3EyZhxYG+f+nykyB+8lOnfF+k1gaa0tBRLly5FcXExDAwM4OPjg/Pnz2PixImanppS/BIUjHulJfgp8mafCzKLvH0wv78XrPX1cSgpEXeLi7D0+JE+9zk70ySV4nZhAW4/WJkBwImU+5jo1A8v+Q3AuhGjMHnPTribmKC8sRGVzc0anK3quJKdhbCcbLAArB06DNti76JW3KLpaXU7MiWzzpTp25PpNYFm27Ztmp6CSlng6Y2z6al49fRJiGWtmp6O0rBZLAyztcMER2dY6Ori9bOnUN7YiM8iwhBbUtyRudWXg8yTKKqvx874WOyMjwX3gcPjBEdnrPAbgJyaGpxJT8GOuFgNz1J55AoFOCwWWCwWzixagn+dPYXEsucraUKmgJLqzaqbS0+i1wSavsRHI0Yj0NYWl7Iy0NBDD1Cposvno0EiwWdjx8NFZIILGenYEd+Wkv28GGuR0J7g8Vv0bWy+E4UASyvYGRoCAP49JBBZ1dW4kJnea7efZAoFvr91AzHFRfhr2kxM2bOTqf9iYAJNd7NxzHi4iERYdPRQj83SeRYsAMPt7LHI2wd+5pYYs3MbPg27AulzkiWnKmQKBaKKChFVVAgAiC8twRIfX/x31Bj8fPsW9ibEa3iG9AnLycbUvW1Fxv2MjZFRVaXpKXULzBlN1zCBppvgcziQymQ4ej8JKRUVvXK7zFgoRG1LC2Z7eGKhlzf2JtzD2gvneu3Td08jLCcbYTnZsNbTh0hbCB6bjR8nT8WptBRcyc7qdenuteIWGGppYcfMOfjl9i0cSkrU9JTUjhwsyJRwyeyrDpu9RuusN6PH52PnzDmY6uKG+NKSXhdknAyN8MOkIIQuXQlXkQmOJCdi9qH9OHo/CS2tveuz9AYK6+twr7QUcoUCZ9NTsdTHD9dWvoxR9g6anhoxNS0tePHIQbweMAivBQzS9HQYNASzolEzJtra2DFjDq7n5eJseqqmp0OMha4u9s2Zj6137+C/Vy+hUSrV9JSeG2QKBc5lpONcRjocDY1QLxHDVSTCMBs77Eu812tWkgV1dZh/5CDme3ppeipqR65oeynTvy/CBBo1E+zihtNpKfgrJlrTU6GMibY2Vg8a0qFQMGrH1l5zU+urZNdUAwCEXB4GWlnj5QED8WtUJA4nJ/YKLbaKpib8ER0FLzMzLPD07rOFyTIlt86U6duTYbbO1ISrSIQJjs7YGR/bq4LMqwMG4tzi5WiSSvHnnbZ5M0Gm55BfV4s3z53Ba2dOwtvcHABgq2/Qa25P6ZVVMNfRxR/BL0DAYZ5znxeYQKMGfM0tsHvWXHDYvePPX18gwApff7DQlvkUtHcnvr15/bksuOstJJWX4ZMrlyBXKPDusOEIWbwMU/u59viAI5a14l9nT6FW3IKPRo7S9HRUTvuKRplXX4R5pFAxLsYibJk+A+9ePN8hsdJTYbNYWOjlg7eGDMWFzAxocbkPVbQz9A7ePh+CYbZ2eHtIIFxEIvx8+5amp/RUZAoFPgi9AB0+H8ZCIRol0l6XIPMk5AoW5Aolss6U6NuTYQKNiimoq8XqkDO486A2oqfCAuAmMsEEJ2csPHoYWdXPR51DX+Vmfh5u5udBi8uFi7EIqwYE4Lub11HxwDqhp6EA0CCR4N9DAuFrYYHXz5xitmj7MMzWmYpwMDTEoXkvQqZQ9OggY6Gri5+mTMXawOG4X1GOlSePMUGmD9HS2oqCulqUNTTg3OJleMl/QIfsTU/k16hI1LaI8cuU4B49T6owW2dd0/v/ZXsANvr62D1rLvbci+vRT2XLfPxweuFSZFRW4teoSE1PR63wORzwORywWSywOv03n8MB54HzZvv/9jWaW1vxQ+RNzD64HzZ6BgDaim17InKFAu9dPIc6iRiOhkaano7SyMBW+tUXYbbOVMBPk4Pxy+1InEpN0fRUumSojS1uF+Qju6YaL+zfg+KGek1PiTb6AgFcjEWIKS6Cn7kFJjg5Q6StDZFQGx9fuQQPU1P8MXU6gLazgDfOnkJxQwOOL1jUMcY3N65hX0I8Et9YgyZpKyqbmnAoKQFbY2OwZvBQAG3puBlVlYjuwavTZ5FfV4uND1xFf54SjAaJBF9cC9OIr8/TkCkUeD/0AtgsFub298TR5KReq2GsUPKMRsGc0TA8ipGWEI1SCVaePNojdct0eDx8MX4i3EQmWHr8CK718OSEznDZbDgZGcFW3wCXs7OwzMcPrw0cDCGXi9TKCiw5dhgsFgv1EgmyaqpR2dSEBokYt/LzMGDLH4+tLH3//O2xa3j8/gt0+XyYaGt3tC+sq4O1vj7cTUygy+cjuqgQu2fNhYm2NlIqKhBVWID9ifegzeOhqRcVr7508hiW+frj+IJF+E/oBYTlZGt6So/BZbMxw80DPuYWWH/1sqanw6BCerWVMyntdquqsHI20hJi35x5+OX2LZzLSFfRDFWHFpeL0wuX4FpuLjZdD+/xgpd6fAE8TEwQVVSI94ePxFIfP+TX1iCxvAzvh16Apa4eZAo5yhobu31uXDYbDoaGcDcxhYDDxdH7Sfh+0hSMdXBCamUFInJzsPlOVLfPiw52BgZolEjA43BQJxb3uGAp5HKxc+YcxJeW4Itr4SoZszutnC8m2ENHCSvnxno5JnnnMlbODG03xZ0z5yAkPa1HBhkfc3PcKy3FG2dPI72qUtPTeSoz3NyxxMcP/YyNEZ6bg6iiQmyJicaPt248FBw1ud3XKpcjo6rqIQXidy+ehx5fgP6mprDWa7shbBo/EQYCLYTn5iAiN6dHblHm1dYCAF72D8ACL2+8GXIGqZUVGp7V/9Pc2oqXTh3HBEdnTU+FFjIFGzIF/UDD+NEwdDDE2gYRudk97kBdm8fDF+MmwtHICPMPH+hxQcZAoIUJTs4Ybe8AD1NTTNq9A0X19fj2xjXcLSnuUCeuaekdhaL1EvFDdUdf37iG4bb2GGXvgHGOTnjtzEkEu7iiTizGzfy8HiW5sjU2BsUN9dg9ay4+DbuCkIw0TU+pgwaJBCdS72OikzOcjUX4s5esFhmeDBNoCGCzWBht74BL2Zm4lN2zTL1MtLVxYM4CXM/LxfzDB3pM9hsLgL+lFe4WF2Gxjw9cjEW4nJ2J/4VfgQLo1Yftj1LT0oKz6akPiadq8/hY5uuPrydMxtbYO/gn9q4GZ/gwZ9PTkFReBiGXByG37VbQ3IPUuGOKi7BuxCgU19fhZA9NtHkUOViQK5E5Ju+1aRBPhwk0BLw/bCTcTUwQlpPdo74O1nr6KKqvw8dXQntMZb+JtjYWeHpjvqcXqpqbsez4UfwR/fw9mR5OTsTh5EQ4GBrCTr8t1fiLcRMQWVDQI5w0c2pqAACzPfrjtYBBWB1yuseYlFU1N+PlUyewf+58ZFRVIam859tCM6KaXdM3k7bVwAJPb4x1dMSac2d6TJDR4nLx3cQp+H7SFCgAjQcZLpuNiU79YCwUwtnIGMZCIV49fRKzDu577u18c2pqEPEg6y8sJxsz3Nxx46VXMcfDU8Mza+PY/WT8FnUb+2bPxww3d01Pp4OsmmosP3G0x20DM5DBrGgoYm9oiJdPnegxaczGQiG2vTALqZUVWHbiqEbnosvnY6XfACzx8UVaZSWyqqtwu7BA44GvpxKalYnQrEyY6+hCi8uFkZYQW6bPwD+xMbiQmaEx2f/TaSlIKiuFo1HPKpxMqaiAsVCIHyYF4fWzp3q02Z7yyQA95TFWtTCB5hkYC4WwNzDENzeuaXoqDyGVyXAoKQH7ExM0NgdzHV3oCfgobWiEkZYQcw8dQH5drcbm09sobWzo+P+/3r6Ffw0agveGjcC/zp5CWqVmnuCzaqqRVVONWe4eGO3giPdDL2h8ew9o20YraWjAxrHj8X7oBU1P54m0ndEwVs6PwmydPQU2i4WfpwRjhJ29pqfSwWAraxyYMx+NUqnGgoyjoRE2jZ+IM4uWwt/CCvUSMTZGXGWCjBJE5OVi4dFDeO/ieRTU1WGEnT1W+QdAm8fTyHzOpqdBLldg18w5MBAoV3OmKjaEXYGHiWmP2W5koA4TaJ7CO0OHQSqX4bceksb8gps7fgmahu9v3dDI9oqJtjYAYG3gcOTW1mLczm04nJzY7fPoy8SWFKNJKkVRXR36m5oifMUqvD10WLc/50pkMqy9eA5RhQVY6O3TzVfvGrGsFa+fOYVreTmansoTkSupc6ZMxlpPhtk6ewJcNht2BoZYe+Fcjzj8NxBo4SX/ACw6eghZD2x9uwsnI2P8d9QYmGhrY/r+PVhz7ky3Xv95JKumGu9ePA9rPT1McOoHBYBhtna4W1zUrWcUP0TeBB5cu1EiQXxpSbdduysK6+vAY7Px85RgrL96uceZ8zFnNF3TN8Onkljr6UEk1Ma/z5/VePEgl83GEh9fNEjEmHlgb7cHmdH2DjgwZz5CszIw88Debr02A1BYX4+d8bEAgCn9XHBhyXKMc3Tq9nmwWSz8PX0mJjr16/ZrP4pULkd+XS2+nzylx51oyB+sSpR59UX65qdSAj6Hg83BMzDawUHTU4Eun4+t02dimK0dON3s1THK3gF+Fpa4U1SIoL07sS/hXp992uotrL96Ge9dPI/3h43EdNfuTUG+npeLpcePYP3oMQjq59Kt1+6KH2/dgBaXizcGDdH0VBgowGydPcKno8chrbICh5I0e/bAY7Oxf858RBbk48tr4d22fWeuo4v1o8fAVWSC90MvoFEqRWMPE158EmwWC8ZCIRokEnDZbAyysu74WVplJYrq6zDGwbHjvcL6OqRVVkLI5faoivinEV1UiGn7d3eoVLiJTPBP3N0O+R51klpZgbmHDqCltRV6fL5GU/1lCgX+fe4s7AwMNTaHrpApWJApIfWvTN+eDBNoOmGkJYS1vj5eO3NSo/PgsFiQyuX48NLFbq+G3jBmLBLLSvH2+ZAeqfhsoq2NIda2sDUwgIWOLn6NugUXkQm+nxQEY6EWqppb8O/zZ1FcX4f5nt4d/Q4mJaC0seGh98JyspFWWYljCxbBRt8AZY0NCM3MxFc3IjCvvxd0+DxkVVUhrrQEdeKeU3DaHlTSqyqxyNsXszz645MrlxBTXKT2a7enZP88JRjZNdX46cEZjiaobG5GZXMz3h8+Elvv3kFVc7PG5tKOsuZlsh5xIqx6GJuAB7R7y2i6ZkCbx8OOmXPw9fWIbrlxAG1qzx8OH4V/nT3dow5X9fgC+Ftaws/CEr7mFlhz7gyG29pjmqsbcmuqUdrYiNNpKZDKZNDlC1DZ3EQ7G4/P4cBMRwdcNhs5NTWY6eYBTzMzuBiLwGaxsOzEUSzw9Aafw0F8aTHul5f3mEA83tEJox0csf7qZbCAbrlVGQi0sH/OPJxKS9W46OU7Q4fB3cT0iQ+I3WkTsCPWF9p6HNrjNNXLsMI/nniuf/zxB7799lsUFxfD09MTP/30E0aOHNll22PHjmHz5s2Ii4uDWCyGp6cnPv30U0yePJn2vJ8Fc0aDNuHHX4KCMdPdQ6PzEHC4+Hv6TCSXlXVLkGEBeHXAQGyZNhM742M1HmSMtIRY4OmNbydOBpfNRpCLC17yGwA2i4Xd9+LQKpcjNCsD/z5/Fj9E3sTehHjUicVobm1FeVOjUinfEpkMBXV1HdpfJ1Lv44tr4Vhx8liH8kJ5UyP6GRtj49gJODq/zbFzsnM/jLKz16jf/eXsLKy/ehmGWloIWbwMfuYWar9mrbgFS48fwXhHJ4g0bBP9a1QkzHR08GKn1aqmkCvYSr9IOXjwIN5++218/PHHiI2NxciRIxEUFIS8vLwu20dERGDixIkICQlBTEwMxo4di+nTpyM2NlbZj/9EmBUNgFX+ARjr6Iilx45odOH6WsAgOBoZYd2li90yDz2+AJ+NG48vr4VrxFAMAERCISqbmzHHwxMfjRyNsJwsXMvNRUhGmsZXl0+jfeUQ7OKGxd4+cBWZ4HhKssrMuugy2t6hTSn67h1sjY3plmtyWCwMtrbBrYL8brleV9gbGGKglTWO3k967GfduaL5+26A0iuaVwbEEM11yJAhGDBgADZv3tzxnoeHB2bOnIlNmzZRGsPT0xMLFizA+vXrac37WTz3ZzR6fAGW+/pj/pEDGgsyHBYLtgYG2Hr3DhRQ/9ZHgKUVXh84GK+ePoG3z4eo+WqPYywUYqqLK6b2c4WryATT9+/Bhcx0nE5L6dHBpTPt/0bttgAm2troZywCAPwZ/AIapRKEpKfhWl5ut36m8NwczDiwF2sDh0OLy+2WmhuRtja+njAZ39+6rjE5/9zaGuTW1iDYxQ0XMtO7JTmiJyCRSBATE4MPP/zwofcnTZqEmzepnZ/J5XLU19fD2NhYHVMEwGydoV4ixqQ9O1DS0PDsxmpi49jxWDN4KGQKhdor/lf6DcBvU6dhR9zdbg2sAg4X8z29YKajg35GxvAyNcefd6IQuO0vFDfUo0Gi+fMxZahoakLkgyf6j66EIrqwEMt8/fHdxCkA2iyUu4vSxgZ8cOkCZHI5ds+aCy8zM7Ver6yxEUuPH8EHw0dhpIblmma5e2C5r7/Gri/H/2ee0Xm1h8e6urqHXuInJKNUVFRAJpPB3Nz8offNzc1RUkKtuPb7779HY2Mj5s+fr8QnfzrP9YpmoZcPjIRaGvVJeWPQYHiYmGLRscNqv5atvgHGOzlh1sF93RZY9fgCvDIgAC96+eBOUSFu5OUiqqgQUX3I8OxRqpqbcSApAQeSEsBC2zbbz1OCwWGx8U9sDM6mp3ZLIoFULsf2uLvY9sIs/HDrJg4mqU8bL7e2Bv86ewoeJqZquwYVNoRdwYkXF+FseqpGHh6VLbps72tra/vQ+xs2bMCnn376xH4s1sNp0QqF4rH3umL//v349NNPcfLkSZip8YHkuQ00IqEQ7wwdhhePHNTYHLS4XAywsMLLp0+odYvD2cgYsz3649ub17Hk2BG1XacznqZmYLNYyK6pBp/DxexD+1BQV9ct1+5JtK8aZx3ch2G2dnjJfwAMtbSwMz4WhlpCVLeoNyX3SnYW5h46gK8nTMKlrAxUqjEFOL60BPGlJZjl7oHbhQUoqq9X27WeRGF9HbbejcEYe0ccUGNgVTf5+fkPndEIBIIu25mYmIDD4Ty2eikrK3tslfMoBw8exKpVq3D48GFMmDBB+Uk/hed26+zDEaNwMCmh2yVd2vE1twCPzcHLp0+oNf9/nKMT9s+Zj9TKCrVdozOTnPvhwJz5+G3qNFjq6aFBIsFXNyKeyyDzKDfz8/DyqRPYER8LJyNjXFq2EpvGT4TLg7MddZFfV4tFxw6jqrkZn4waA1NtHbVeT5vHx/YZs6HH7/rmqG7+ionGgaQECDjd/xzdrnWmzAsA9PX1H3o9KdDw+XwEBAQgNDT0ofdDQ0MxbNiwJ85z//79WLFiBfbt24fg4GDV/QKewHMbaC5mZuD36Nsauba1nj7+mjYDjkaGar2Orb4BPh87AStOHsMpNR/SOhu1HSQOtLTGttgYjN+1HRczM9R6zd5MZnUVxu7chpyaGmyfORtORuo7iG1HAaCkvh4H586HtZ6e2q6zNyEeYTnZ+HFykMa0yOwNDHF20VLwOfQzwOjQ7kejzIuUtWvXYuvWrfjnn39w//59vPPOO8jLy8Prr78OAFi3bh2WLVvW0X7//v1YtmwZvv/+ewwdOhQlJSUoKSlBba36bD6ey62zef09cSwrUyNZZnwOB38ET8cvUbdwr7RUbddxMjRCVk01Ju/ZqVYbZXcTE2wYPQ5yhQKLjx3Gl9c1m97bm6gTi/FXTDS23r0DmUKBt4cOgzaXh1+ibqFBTfIuW2Nj0CiVYO/s+Ziyd6fatmy/uXENK/wGgMtma6SwNbe2BgllpXgtYBB+jgjrtusqr95M3nfBggWorKzExo0bUVxcDC8vL4SEhMDevi0xo7i4+KGamr/++gutra1YvXo1Vq9e3fH+8uXLsWPHDtpzfxrPZR3Nsdi7WBt+RSNz8DQ1w7z+XvhUjddvt1Weunc3xDL1nf2Mc3TCF+Mm4PtbN3A0OamPimd0HwYCLbwbOBwTnJzx5fVwnElLVdu1bPUNkF9XCyM1nxP5mVtAi8fryMjrTky1dRCyeCmm79iGyNX/7pY6mh/vDINQl/7ze3NDK94ZeFOtc9UEz+XW2dc3IjRyXS8zM9yvKFdrkHlz0BC86OWNhUcPqSXIsFksLPTyQaCNLW7m52HS7h04wgQZlVArbsH6sMtYdeo4ZA9WAeo6v8mvq4W1nj7OLV4GXzUqCbBYLPw4OQiWuurbqnsS5U2NWHLsSLdmnyljeqasTlpPpm9+qmdQrIG0x/6mZtj2wixY6Oqq7RpsFgs6fD5ePHJILZX+AZZWOPniYkx1cUVpYyNaWls1quDbV7lfUY5zGemw1NXD9pmz8dX4SWqReSmsr8N7oeexZfoMDLG2Ufn4QJtj6J93ovFH8PRuPy8B2hSn+xmpN9miM3IFS+lXX+S5PKPpbvQFAvwxdTo+uXJJLSmfLAD/GT4SR5KT8PWNayofv525/T3xy+1IhGZp/pBfwOHCWl8fNnp6yKyuRp24BRvHTnjwnj72J97Dr1GRiHn1DejweACAkPQ0rL14DkfmLYSXmRlkCgVu5OXi1TMnMcfDExa6uiisq0N+XW23CZo+jeKGekzavQNvDBqCc4uXY/r+PR3qyariel4uVoecwWTnfrhdWKDSsdvZGR8LfYEAeny+WtOrn0RaVfdkXDI8GSbQdAMj7RxwJi0FoVmZKh+bw2Lh6wmTYa6ri19v31L5+H4Wlvhi3AQsOnoY6y6HPruDmnA0NMJQGxvczM+HkMfFobkvoqi+HgX1tdh6NwbRhfW4lJWJwrpaFNTXobKpCQAQsOWPx8aae3g/gDbPH4MHmnflTY2w0dfHcDs7CLk8xBQX4T/DRmC0vSMiC/NxuyAfl7Oz1K7c8ChNUim+u3kd/8TGoKq5GcEurriWl6tS24I7RYW4U1QIP3MLmOnqqiVbsF34cpS9AyJyc1Q+fk9BruT2V1912GQCjZpxNDTq0MNSBx+NHA19gQCrTh1XqYQLC8BrAwdjua8fPrx0sduVnR0MDVHV3AwzHR3snjUXza2tuF2Qj+iiQqRUVMDnz98e60P6O5bK5ah4EJAicnMeuwH+cOsGzqanYaiNDYL6uSI0KxMLPL3hKhIhsiAfUYWF3fZ7aa+18jA1wwfDR+GdCyEqX3U1SqXYMHocdHg8HE+5r9KxAUCXx8d3E6dg6fEj3VbX1d3QVWDu3L8vwgQaNTLM1g7fTJiMCbu3qzyNlAWAx+Hgr5hoVDU3q1xEUJvHg4OhIV7YvxflTd2j7Gymo4N3hg7DGAdHtLS24v3QC22V5t0omdMZmUKB5PIyJHcyn4suKoQun4/5nt7YMHocRu3YCleRCDUtLd0yx+9uXsftgnz8GjQNb58/q1Ipn/SqSiw6egh7Z89DnViMy9lZKhsbALJqqrEh7DI2B0/HtP170NRLnFsZlIcJNGpCl8/H1xMm4d2L59RSq/DWkEAYamnhf+FXVTqun7kF1gYOx8qTx/DhpYsqHbsrTLV1MNujPxLKSpFQWoLUygr8cjsSxQ3/f5alScHTR8mqrkJWdRW2dZLgH2hljX8PCURCWSkOJibggpoLVa/l5SJ4327UilswwNIK6ZWVKquVyq2twbITR1GnppXauYx0uIhMYKtv0CdXNTKwIFOiTFWZvj2ZXrNO27RpEwYNGgQ9PT2YmZlh5syZSE1VX52Bsszx8MTFzAy1HLAGu7hiprsHflbxmcwibx/8OW1GRwGhOuFzONg6fSbOLV4GKz09lDQ0oF4iwY642IeCTG9gz714DP/nbxxOSkR/0zZhwhfc3NUqMFnd0gy5QoERdvY4+eIiuIlMVDZ2VnUValpa8GfwC2qRq/nl9i1k11R3ixpCd6MJ47PeQK/5VOHh4Vi9ejUiIyMRGhqK1tZWTJo0CY0aMux6GmwWCzvjY7HpuurrdXT5fHw4YhReOX0CNS2qe+o009HBdFd3zDm0HxF5uSobtzPWevr4eORovDUkEBKZDLvuxWHYP1uwIewKsqqr1HLN7kIik+FcRjp+jGzzABEJtfF78HScXrgEM9zc1XbdX27fwjc3r2P3rLkYamP77A4UaZXLcaeoEFumz1CLZpi3mTl2zJjdkRHI0LfptcoA5eXlMDMzQ3h4OEaNGkWpz5McNlWJFpeL4wsWYdnxoyo/29Dh8dAolUKbx1PZ/na7jP9Pt2+pNaNqzeChWObrhz334nE4OVEjyr6aYJCVNYQ8Hq7l5mBKPxdcyMxQy+/ZycgY5Q8eulQpOfT1hMlgsYD3Qy+obMx2Phs7Hi2trWp3Je1Oh831tydAS5d+8GxpkGLjkEuMMkBPoV0A7mmucGKx+DEDIXWzZvBQJJSVqjzIaHG52DtnPkba2assyBhpCbFvzjywWSy13Py0eTws8vYBC8DtgnxM2LUDP9++9dwEGaAteSAiNwcGWlpY6OWDkEXLMMHRWeXXyaquQr1EjK8mTMR/ho1Q2bj/vXoJ22Pvqmy8znxz4zomODnDSEv1xaiagtk665pe+akUCgXWrl2LESNGwMvL64ntNm3aBAMDg47Xo2ZCqsbFWIS5/T2x6Zrqt8y+nTgF98vLcE1F21o8Nhv75szDhYx0fHfrhkrG7Dz2Uh8/XF62Er7mltDichFV1H2pwD2RmpYWLDtxFJ9fC8OaIUPRz9gYbArGVKR8eCkUQ21s8d9RY1QynkQmw/2Kcrw3bAQmO/dTyZjt1EvEmLxnp9o9eboTVdkE9DV65ad68803ce/ePezfv/+p7datW4fa2tqOV36+eoX9Cupq8erpkyr/wxlt7wATbW2sv3pZJeMJOFxI5XK8e/E8flOhVQLrwdgepqYYaWePZceP4oNLF9DcDb71vYXrebmYcWAvMqqq8PaQQGyZNkOlemb1EjGWHT8Caz19WKnQCuBU6n1sHDu+I9lBVUhkMqweNATLfPxUOi5Dz6LXBZo1a9bg1KlTuHr1Kmxsnq7PJBAIHjMQUhdT+rnAVWSC+FJqPt1UMRBoITw3B8tPHFWJ3Lq1nh7OLV4KF2PRQ/UhyuJhYooTLy7GIm8f3CstxatnTiK9qlJl4/dFfomKREReDnbNmoN1I6idM1KhUSrF62dPoayxEUt8fFWyckqrrMS6y6H4a9oLKj/AP5OWijVDhsJMR72GbN2BQkkvGgWT3qxZFAoF3nzzTRw7dgxXrlyBo6OjpqfUgUgoxMYx41XuIeJlZoaQxcugw+OppOrf3sAQ++cswJaYOyoNAst8/LBj5mxsibmD7XHq2c/vi7TK5dhzLx7jd21HSHoaWGjz91EVbBYLYx2c8MPkIHDZyv+pX8nOwqpTx9Go4kLL3Noa7IyLxYbRY1U6riZgts66ptd8qtWrV2PPnj3Yt28f9PT0OlzhmjUg0vcoH48cg4NJCchUYYqukZYQfwbPwMdXQlX2h73c1x8/Rd5UmZe6ibY2ACCntgYv7N+rNpkdElhoW7X5PPBLtzcwxBBrm44XC4C5ji6GWNvAx9wcBgL1ZB+S0CSVIr60BDb6Bvjnhdl4e+gwlQQGiUyG18+chIDDxS9TVGPXm1ZZieG2dtg0fqJKxmtny907OJycpNIxGXoOvUYZYPPmzQCAMWPGPPT+9u3bsWLFiu6f0AP4HA5kCjl+i1KtLfTLAwJw5H4SwnKylR7LTWQCDpuNjRGqUxEIdnHF+tFjseLEMY2IJJrr6MLJyAgOhkaQKxQ4mJSAL8dNxAtu7qhsbkJcSQn+ff4sRtk7YKLT/2d53S0ugreZOZb5+kGHz4edgSFePHIQOnweVvgOQHZNNXJqanAjP7dDX6y7yK+rxbT9u/HV+Ek4MGcBFh49qPR2qVQux5pzZxD4oMaGBSjtHXSnqAifjBqDmW4eOJGqGk00iUyGsJxsrPDzx4HEBLU5f6obZaX++6pNQK+to6GDquto+BwOjLSEKpdu53M4kCsUUCgUSlfoe5iYYvuM2fj4SqhKtKtYAL6ZOBleZuZ450IIUiq6R0bEVFsHox0cIOBwsTchHn8ET4ceX4DsmmrElRTj2P1kGAuFaJBIaG0zmmhrI9DGDg6GhnAwNMTfd++Ay2bjl6BpCM/JxtWcbEQW5KtUuPRp+FlYIq6kGH7mFohT0bnfUBtbvDFwMF45fVJpUzxnI2PsnzMfcw7tR36d6rzmv54wGZXNTfhGhXYX3VlH8/aNFyBQoo5G3CDFT8NP9bk6ml6zoumJrPIPgKORkUqL2VxFIvw0eSqm7d+jdG2LuY4utr4wS2VBxlgoRFVzMy5lZeLjK5fUftMVCYWobG7GL1OCEWhrh4jcbISkpwEA3jh7+rH2yqxAKpqacDot5bH3Xzl1AmMcHPHKgIFokkpRUFeLUfYOuJKd1aH8rA7iSorB53CwfvRYFNXX44NLF5TeQr1dkI/ZHv3x3aQpWHPujFJjZVZX4ZXTJ1QuF/TV9QicX7IMh5MSkV1TrdKxGTRHrzmj6Wno8fl4yX8Afo5Und4YC8Dn4yZia2yMSgooOWwWvr4RoZIgM9ujP84uWgoDgRYuZGaoLcj4W1jif2PG4frKV/Dl+EkAgE3XIzBk65949+J5lSsKP4vMBwKaS48fwZ2iQmhxuRhsZYPzi5fj6PyFcDI0Utu1JTIZFhw5iPKmRhxfsFhpl00FgI8vh8JCVxfBLq5Kzy++tAR+FpaY5e6h9FjtVLc047eo2/A0U20adXfBOGx2DbOiockSHz9czMxAYb3q1Abm9PeEXC7HsfvJSo+11McPZ9JScSr18ad0Ul72D8BCbx+8eOSQ2ooufczNca+0FENtbJFXW4vFxw4jt7YGAHqUyGZOTQ3eCz0PDouFAEsrlDQ2INjFDcNt7bDlbjRyampUej2pXI7/hV9FoI0tqpqbwWOzlTq3kcrlWHXqOBokEnBYLKW3ZssbG7E5eDpu5OepzD589704AFD6s2oCOdhKmZf1VeOzvvmpuoGd8bH49uZ1lY55KSsT7148r/Q4s9w9sMTHV+l9eKBtlWWhp4cFRw523PhVBYfFwgw3d5xbvAwbRo8Dn8PB5jtR2BYbo/JrqRqZQoGookI0SaWIyM1Bfl0tDsxZgF+mBKul4v9WQT6EPB4uLFkOX3MLpcaqE4uhw+MhZPEymOvoKjVWbm0NdsXH4ZORY5Qa51GC+rngu0lBKh2TQXMwgYYG8z29YG9gqFL15NcHDoYOj6f0CsnDxBTrRozGv86cUloT7c1BQ+BoZIzPI8JUeh6hxeWCz+FgonM/zHLvj0/DrmDOof3ddtCuauolYmy+E4XRO7bhWEoy5AoFlvv6d2R6qYomqRTrw65gy/QZGGRlrdRY9RIJDiUl4o/g6eApmUr9V0w0KpublB6nM1eyszHIylqlqgndgUzBUvrVF2ECDSEGAi38Z9hIlcrMDLayxkIvb1SqIJ1Wj8/HussXkaXEQSoLwPpRYzHW0alDEVgV6PB4WD1oCMJXrMIQaxucz0jHipPH1OLZownEstaOdPSKpkasHz0WJxYswhgH1RUXX8/LxZshZ7Bm8FClx9oWG4Oi+nq8MWiIUuNIZDL8L/wqrPT0VWYpIJa1YktMNP49JFAl43UXzBlN1zBnNISs9B+Ac+lpKnN95LHZ+GzcBGwIu6JU7QALwIte3jicnKS0rfPawOFwNzHBsuNHVFYsyudwcHrRUkQVFmD+YdVvw/U0zqan4Wx6GsY4OILH5oAFQKStrZKVYXRRIZadOApjoRD9Tc1wXQmh1Q8uXQCHpZrnzTcHD0FhfT1+euDJoyz7Eu/1uu+JQkkFZgWjDMAAtFWab74TpbLxTLR1EJqZoXRh5puDh2KqixuUKYvisFgQcrnYn3gPL6lIakSPL8C8/l6QyGRYfPQwPrx0sdfdPJQhLCcboVkZ8DA1Q8iiZZjv+WS1cVJMtLXx7cTJmNqPfgZZk1SKeokYe2fPU9oR9Osb17DIy0dlmXgSmQw38/Mx3tFJJeMxaA4m0BDAZbPxzoUQlWVBmWrroFEqUVqmf7S9A+Z7euHf58/SziLisdn4NWgaXgkYhKL6epVUZo9zdMK5JcvgKhKBhZ6VPdbdJJeX4cWjh7DA0xvbZ8wGR0VCl0uPH8FHo0Yr7eK5Mz4WfwRPh75AQHuMiqYm/HT7Jl4fNFipuXSGxQI+Hzeh19g+y8BS+tUXYQINRXT5fFxetlKlyrWbJkzETDflaxCs9PTxZsgZ2gWLfA4Hf06bAalcjj9UZBsw0MoaH40YjbfOncUX18KVlj3pC2RVV2He4QPYEhMNmUKBAZZWSo+ZUVWFxUcPo1BJM7mLmRkISU/DF+OU0zDbn3APn1y5pNQYnWlpbcU/sXexWoXBS53IFcqe02j6E6gHJtBQZJmvH27l56vszGKycz9Y6Ohhb0I87TEEHC4mOffD/sR7StkT+FtYorihHu9cCFH6fGeScz/M9/TCnaJCTN23C3eLi5Qar68hVyhwqyAfXDYb7wUOx57Zc2GjpNRIbm0N7hQV4u2hwzCvP/2tuR9u3cB3Sqbst98nD81doNTqqDN7E+IxyMpGZeMxdD9MoKGANq9NcPGPO6oTzlwzOBCfXL2kVMHce8OGY4qzi1LzGOvgiNuFBfjkyiWl1Ah0+Xz8PCUYa4cOR+oD/TNNpCuzWSw4GBpitL0D7AwMALRt4bW/2s8h2tWcla22p0urXI7Fxw7jYkYGjs1fpPT5CAAcSU7EO0OHYZSdPa3+MoUCubU12Dh2PPwtLGnPQyKTIaGsVGUZY01SKSbs3o46sVgl46kTxsq5a5isMwooFAp8dDkUebWqEw+cf+SAUnUuQ21sMdnZBcH7dtEe441BgzHB0Rk38vOUDgrLff1R1tiA/4Se77YAY6mrBzcTE7gai3A9Pw+VTU24vGwlShoakFNTjYNJicirrcUcj/5gPTgTuZmfh/sV5Zjs7AIXkQiuIhHiSkrw2pmTWODpDTYLSK2sRFplhcr9hR5FAWDXvTiEZmWipKEeXmZmSK2ooF0NX1BXh9fOnMTWF2Zi2r49KG+il5p+NTsL308OQvDeXbTdUX++fQuhS1dgb8I9ZKnAPkMik+GrCZPwe9RtlYp4qpp2AzNl+vdFmEDzDDgsFgKsrHEpO1Ml4+kLBPhmwmS8fvaUUuOMtLPHh5cvop7mzXCsgyMWeHpj9sF9SgUGdxMTGAi08LsKLaGfhBaXi8nO/RBfWgItLhdbp89CSkU5UisrIJXJUNrYgAFb/njs86wOeVxAsrNlAp/DAQA0SiUYbG2DWe79IX2w4gh2cUVxQ4NatwDbkySW+frDRFsb/zpzmraqQ0JZKWYf3Ec7yADA1ZxsTHZ2wVtDAvE1TRXlOrEY7148D4kK1CnaKaqvx0q/ASq1u2DoHphA8wxG2jvg9YBBStUqdGaZj59SNwGgbStPWfmb/qZmeOvcWaWKRH3MzfH39Jn4+LLqDn+7Ql8gwIfDR2FyPxdEFxYgtbICKRUVGLH978fa0gma7X3OpKXiTNrD5m3aPD4+HzseAi4X22JjsC/hHr0PQYEPL13El+Mn4p8Zs/DK6RO0V7yF9fUYYm2Dhd4+ePt8CK0xvr15DT5KSt1cz8uFg6EhLHX1VJJxeDgpEacWLsam6+E9VgNN2ep+RhngOWV+fy+VOf9pcblY6uuHv+/eoT2GoZYWLi1dSftglM1iwdfcAr9H31YqgcDH3Bxbp8/Cfy6eV9lqrzPmOrr418DBmObqhkaJBCkV5Zi0ezteP3uq2zxwAOBwciKm7tuNNefOoqyh7QHhf2PGYZqrW8dKSFXIFQqsu3QRV7OzlE5/vltcBHsDQyz08qHVv7K5GTfy8zDZuZ9S85jq4qoSFQOgbeV37H4yzHR0VDKeOmDOaLqmb34qFaEvEGCojS3OZaSpZDyRUBu74uOUOutZM3gozqan0j4Y/dfAwXh76DDa1wfaVAjyamvx+tlTiFDRSq8zW6bNwJlFS2Gmo4PUigrIFArsuhenEokeuiSXl3UE1FsF+Zjp5oGbL72qVJZXVygAbI2NAQD8GjQNhjQN+qRyOd46dxbvDB2mVA3KxyPHwE+JxIDd8fGY5NwPptqqCQ6brkegWEWqHAzdBxNonkKdWIyp+3YpLU4JtJ311IlblDrLsDcwxHRXd/waFUmrf4ClFRZ7++I/ofQVosc4OGLXrLmoaWlR6bmFo6ERVvkHAAA234nC8H+24H/hV5FeVamya6iK8xnpePn0CQTt3YXbhfkw0dbGmsFDocVV3U50vUSC9KpK7J8zn3ZmXH5dLVacPIY8mkoMEpkMX9+4ppQyc71EjCPJSXjRy5v2GI9yfvFymGhrq2w8VSKHklpnfTQZgAk0T2Gl3wBUN6tGoXmqi5vSsudF9XVYfuIo7dXMPE8vvH/pAm29rcnO/fDV+En46noErf5docPj4YPhI3Fw7oKOs5LYkuJeoeRc3tSIvNpayBUK2BoYIHTpCqXkYB7ll9u3cCLlPv6aNpP2GMnlZXAxFuG9YSNo9T+bngqxrBWuIvoqyr9G3cKfKpRtiizMx2z3/iobT5UoHmSd0X0pmEDzfOFhYoqlvn4q8XQBgNcHDsKOuLu0+w+wtMJIewfcryin1d9UWwcfXrpIO6lBjy/Au4EjsPT4ESSVl9Ea41HYLBZG2ztCTyDA5D07OwyvehtVzc14P/QC1pw7izn9PaHD44GrIsn8v2Ki8eqZE+CwWLS3n3JqqjHJqR/tILjk2GGkVdJfWTZKpfC1sMQcD0/aY3TmSHIi5qlQM06VMOrNXcMEmicwr78XjqooCWCUvQOkMhluFeTT6s8C8OnocbQPiBd7++K7SVNo9QUAZyNjNEolCNq7UyVbWZ6mZjgybyGCXdwQkpGGT65cUqntgqaIKynGqgdipH9Nm4ENo8eqpJq9qrkZgbZ22DdnHq3xmltbsebcGWwYMxbWeuQqBAq0uay+OmAgcd92qpqa8N6w4SpJoLhXWoqDiQkqT8ZgUB9MoHkCw+3sVGKpDAAJpaX4T+gF2v1nufdHg0SM0Czy7C5XkQj/HhKIj6+E0rq2k5Ex9s2ZBycjI6VtfwFg45jx2DJ9Jnbfi8XpNOVtpnsqb58PgUyhwMUlKzBOBerD1/NyEZqVid+nTqe1WkqtrMC6y6G0V+jnM9PxSsBAGNM8L8qqqUZsSbHKVjVbY2NgpKUZVYenwWSddU3f/FQqIGjvLpXk/ruKRLA3NFRqJeBhaoovroXT6vvO0OH48lo4CurInTuNtITY+sJMbAwPQ0aVctXd7Teo8NxsTNq9HSdT+26QAdoOwT+PCMOS44eRV1sDPT5f6WSBb29cQ71YjKE0nTuvZGdByOUh2IV8C62grg5HkpOUkpX560407A0MaffvjJGWECGLl6k0AUMVMFtnXcMEmi54f/hIWOnpqWSstUOHw11kQru/Do+HL66F0z4XWXshBCdS79PqO8LOHsfvJ+NseuqzGz+FoH4uOLd4GUy1dXA5O0tlwqS9gYyqKmRUVeEFNw8cmbcQ1kp8rxQA3gg5jet5uXCk6fnSKpfj0zHjOnTgSPgj+jau5dJPZ48vLcFXNyJUYpFQ3dKMmKJCpet8GLoHJtA8gqm2Dub390KZCiyMnY2M4WNugWMp9LbgTLV1ELp0JbRpWBPY6Otj/5z5tH1l/CwscTothXYqNdB2tvRe4HD8Z/hILD1+RGlFhN7M3oR47E2Ix5H5C2mvSNrR5vGwe9ZcjLZ3IO5b3FCPX25H0rIDqJdIEJ6bjWAXN+K+7biKRDg870Xa/TtzODkJc1Vcx6QsymScKauT1pNhAs0jzPboj5D0NJWk1wa7umFnfCztsd4NHI7DyYm06ni+GDcRFzLSafnAvDpgID4ZOQZsFTx5NrVKMfPAXqWylvoK+xPvYc25s0pv9zRJpXj97El8M3EyXIzJ04733ItDSUM9rVoUuUKBt4cGYritHXFfoM2sjcfh0O7fmas5WfgrJlrpcVQJs3XWNUygeQSRUJv2CuRRfrl9C1tpys2Y6+hivJMzrT+kUXb2MNHWxi4a6cI+5uZY6T8Ar589Sds2QF8gwK6Zc2Clp4c/oqO6Xd6dz+HA09QMfA4H+gIBfM0tOl56fAEEHC58zS1obz8pw52iQoTlZOMl/wFKKTQklpXh84hwzPIgrydRAPhP6AU0SiTEmVsyhQLf37qB1wfSNyLbHncXi7zpSeN0plUux/3yMrib0N+aZugeetZJWg/gy+v0Dt0fZZJzP2hxuThF89C7pqUFq04do7WaKaivx8c0/WWmubhj/dXLtIs6jYVC7Jo5F1dzspR2faSKHl+AeokYw2zt8PbQYXATmSC7ugqvnTkFWwMD/KdTseJX1yNQ1tiAj0aOhkioDQMtLXx0ORSXszPhbWaOpPIypc3fqHA0ORm7Zs2BFoeLr27QK4A9nZaC02kpMBBooVZMXli8fvRYpFZUYEd8LFG/0MwM/GfYCJhoa9P6nlzISAeHpZpnXA9TM6weNAQLjx5SyXjKouyqpK+uaFgKhQpyVnsJdXV1MDAwgN1Xn4PdhYbUbI/+0ObxsOcefdfLdnbPmoudcbG0BCd5bDYmOffD2XRyjTUPE1PUiVto3eSNtIRK17P8MXU6ksrL1G4b0N/UDAs8vTDIyhqWenqYvGcneGwOLPX0cK+0hPJ2pbFQCJlcAT6Hg79fmAlHQ0PcKy3F79G3EVmQDz6HozaVAj0+H//MmI0/70ThcnYWrTE4LBZCl63E2gvnEFdSTNS3n7Exds2ci7E7/yFOe+awWEqlu/PYbIi0tVGipG4Zj83G7Zdfx7hd/6CmpetgK29pQd6Hn6C2thb6SrqZPon2e8vkc6+Cp8OnPY60UYILQVvUOldNwGyddeIFV3eU1Csv2GemowN3E1OE52bT6h/k4kprSwQANo2fCA8TM+J+Q6xtcHjei7TPZYy0hG3qARfPqS3IOBgaYtP4iTDX0QWPzUZmVRXevXgeAVs2o6yxEYX1dbhTVEgUGKqam1ErbkF5UyNmHtiLwG1b8OedKJQ01MNMRwdhy1dhlX8AhGpIo62XSLD42GFczs6CM03hS5lCgc/Cr+L7SVOIz34yqqoQXVRIaxtLplDg+0lToMund1MdbmeP75WUZALaxEOv5eVinIPytUoM6oMJNA/Q5fPhZ2GJaypQI3YyMsaBxHu0PTOW+fhjd3wccb8xDo5gs9jEqygdHg9fT5iMDWGXaW238dhs/DntBcxy96DtyPg0TLS18ePkqTg4dwFya2vRIBEjvrQEu+7F4X5FuVIW1I/SJJXiRn4ecmpqUNbYiGUnjsDT1AxhK1YppYL8JNqD4jcTJ2O5rz+tMa7mZCO6sBAvPxAlJeHrGxEIobFyboeu5tj1vFy4ikSw0NWlfe12vrlxTS1WFXRgkgG6hgk0DzDX0cXehHiVaJtFFuTj+1s3aPW1NzCEsVALEbk5xH0Xe/vi59s3ifu9GjAIEXk5uJGfR9wXAP47eizKGxtpJR88jf6mZvC3sESDRIK4kmKM2bENf96J6tY6nIyqKqy9eA7zDh9ATk015nh44t9DAmEgoCff/yRWh5zGawGDEEgz9XljxFX8fTeGuF9RfT20eTxMcHQm7rsrPg7LaAbHVrkc59LT8YKrO63+nSmsr8MQaxsIOJo/clZAuRTnvnqOwQSaB2RWVyntWgm01c78GjSNdv/c2hpM3beb1hdudchpWnv9v0ffxiaaygNWenpwE5koZT3wKH7mFtg6fSb+mvYCzHR00NLaip3xsWpZLVGlXaX5VkEejIVCXFq2EmuV9PXpTElDA9acO0PbqKxJKoUun4ct02YQF0SyWCx8Nm488dZbfGkJ7hQX0pbs33I3mpasUlcs8fHDcDvlU6aVhVnRdA0TaNC29ROyaKlKRPpmunsgt6aaVl9DLS18PHI0rSLLHycH0RJc/HFyEERCbVo3cVt9AxTX12PBkYMqCQLtf2Kz+3viQmYGxu38BxcyM5QeV5UU1ddjQ9gVBO/bhdQHtUGDrKxVMnZMcRHeOn8WVnp6tIp0K5ubweNwsMjbl6hfVnUVIgvysYSwH9BmP11N05CuoK4OXDZbJdtnoVkZmOTEqAT0VJhAA2CIjS3qxGKVZBfNcPOgLfmywNOb1g1mgqMzHA2NiFNNZ7i5w1bfkJamm5WeHg7NWwB3E1Pivl3ha26BkMXLYKQlxPqrl3E4ObHH+sIDQFljI86mp4LP4eCD4aPwx9Tp0KN5MP4oS3z88N3EKbRqxDeGX8WawUOJBSd/vR2JUTSUBgDgzKKltFShAWC6qxuW+PjR6tuZS1mZGOfopPG6emZF0zVMoAEw0ckZF7OUf3LW4wtwMSuDlgAlm8XCYm9fWp4s/x4aiJ9u3yLqo8Pj4f3ho7Ah7DLx9bS4XPwZPAN/REfR9sfpzAo/f/w1bQa+vnGt19kFSGQyLDx6EAV1dTi1cIlKnB9/uHUDRkIh3hw8lLhvdk01vrgWBh6H7E87q6Yay04cJb4eAFzOzsJiH/LVEACcSE3BDDd3pQNESUMDXjiwR+NnHEyg6Rom0AAobWzARRVs0TS3SvF5RBitvlZ6erhTVIiUigqifnp8Pq7n5SIshyyVWsjj4beoSFpinaPsHZBYVqoSozIBh4v+pmaYdXAf8WfoKUjlcnx5PRzvXDiHiqYmpbPTWuVyrA45jRF29tChscI9mZoCLS6XOGVai8vFyRcXE6dy70uIx7z+nrQO47Oqq1DV3IyBKth+5LDYKrFkYFA9z32gYQH4IzqKlox+Z3hsNsKWr6K9fVJQV4e1F88R99Pi8vD1jWtEfWz09SHk8rA/8R7x9ewNDHExMwMf0fS3acfH3By7Z82FAgq8H3pBJZYMmqa9YPJ/Y8YpvZVW1dyMBUcOolWugA2Nwj1/C0t8NWESUZ+W1lakV1YSZ5IV1ddj0/UI2mecr585hbvFRbT6dkaHz8MnI0crPY4yMCuarnnuA81bQwKxgmaKZmdG2Nkjp7Ya9RIJcV8HQ0PsnT2PuN8YB0f8GhRM3O/T0eMw1sGRuN9wWzvsmT1XaVHIhV7e2DJtJrbFxqit6l6TrDx5DPl1tTi1cInS/itDbWywa9Zc4pXNydQUKNB2DkfCr1GReMl/AHHQOHY/GWY69KymixvqscDLW2n767TKSrBYLLXUO1FFoWAp/aLDH3/8AUdHR2hpaSEgIADXrj354bO4uBiLFi2Cm5sb2Gw23n77bZqfljrPfaAZamOrknOGMQ6OCM2kl6o5pZ8rkmlsYc339MLBpASiPm4iE7ibmGIf4WpGyOVi0/hJeO/iedrWA0BbZt1sD0/MOdR7t8qeRatcjk3XI7Dh6mWUNzUqdf4QnpuDG3m5eDdwxLMbP8J3N65hhrsHUZ/c2hr8FHmT1sPE7llzafvtzPHwhK+5Ba2+nbmZn4fBKsoC7C0cPHgQb7/9Nj7++GPExsZi5MiRCAoKQl5e13VxYrEYpqam+Pjjj+HrS+9sjZTnOtBw2Wz0NzXDvdISpceKLynBFZp6VRMcnXGJsJ5AXyDAUGtb4vTf+Z5e2BF3l1g4cqZ7f9zIz8XtwgKifp0ZaWePJqkU8w4f6DbBTU0SkZeLltZWHJ2/UKmn7G9uXMNoBwdiG+WookK8cuoE8fX2JyZAyCU/G7qSk4XxNAo/AeBGXi6G29nT6tuZL6+FEz98qRJN+NH88MMPWLVqFV5++WV4eHjgp59+gq2tLTZv3txlewcHB/z8889YtmwZDGgY4NHhuQ40Ojw+dsTdVboGhMdm40TqfeTX1RL3ZQG4V1qCO0WFRP0kMhn+dfYUsbrzV9cjsJuGaOj+xHvYEHaFuF87Q21s8dWEySqvqO/pyBUK7IiPxV/TXqCtC1YvkWDynp2oolGvYqNvgI1jxhP14XM4CFm8DIZdCM8+jUtZmZjgRDPQ5OfRVkXojFQux0IVWBDQRVVnNHV1dQ+9xE+w2pBIJIiJicGkSQ+fx02aNAk3b5KrhKiL5zrQ1Ipb8GOk8v8Y093c8SUNx0KgLa15Y8RVYiVcfwtL4uC00MsbXmbmxDI7X4ybAH8LS9rnKZa6evhxchD+ff7sc+myeSo1BeG5OVg/eiztMVrlcnw0YjSxVExhfR3GOTmhnzH1FZVEJsOV7ExMcyVz0ryZn4c/aRqRxRQX4ZXTJ2j17YxEJsO7gSOIg2RPw9bWFgYGBh2vTZs2ddmuoqICMpkM5ubmD71vbm6OkhLld2pUxXMdaL6ZOBljaByKP8pwWztEE9702/l16jSMINwysNHXxw+Tg4hqBgQcLt4ZOpz4Ru9paobR9o600qDb8TY3x29Rt4kDY1/iq+sR+PGWcg81EXk5eG/YCCKF7Va5HLvj4/CSH5ng5vGU+5hFKJgpkcmQVllBKwGiVS6Ht5k5PFRQABxbUgR/C0ulx6GDqpIB8vPzUVtb2/Fat27dU6/LeuQ7oVAoHntPkzzXgWaItQ0yaRRXPsowWzvcpCFIKeBwMczGjthHZJZ7f5xOTSVSLZ7t4YHoogLiNO7/DBuBn2/for2aCbSxxcXMDOxNUN7jhxRvM3MEWFohwNIKrqI2y2MXY1HHe93psNkql6O4oR7fTZyCkTTPIq7n5bbZGRAe8O9PvAeZguxMLrIgH79FRRL1AYDR9o54e2ggcT8A8DG3IA5uXRFbXIwASyulx6GDqrbO9PX1H3oJniAvZWJiAg6H89jqpays7LFVjiZ5bgONibY2hFwerXOVzvA5HPwTe5dWHcgwW1vcKy1BA2FK9Cx3DxwntJu2NTDEVkJ1XzaLhZv5eTh2P4moXzsLvbzx8cgxKtGQexZCLheTnfvhh0lB+PhBLcVL/gFYGzgcawOHY46HJwBglkf/jvf+O3oMgLYCVFVkPFFhT0I8vp04hbZky5fXwlFKaBZWJxbjv1cvE2WSyRUK3CkqhLcZ2c3qak4WRtk70kpVvp6XqxJhzJ3xsfiFRpBUBd2d3szn8xEQEIDQ0Ifr2kJDQzFsmOpEX5VF87raGkKbx8O2WHJZ9UfhsFj4++4dWn1rxWJac1h24ijRyoSFtswlUnzMzLGF5mfzM7fAv4cMw9zD+9VWK2Mg0IK1vj6Sy8uwd/Y8VLU042JmRkcG3zsXQh7r09XvwVpPHx8MHwlDLSEOJyfiJxWc2z2JuJJi/Hz7Fn4Pno5ZB/YSS6bcryiHkMuFr7kF4gmyJY2FQpxauATjdv5D+d/DUk8PvwZNw5id2yhfp6q5GZnVVQiwtCLOUEwuL4O5ji4MtbSe6JZJhQaJBAs8vXEkOVEpF9Dewtq1a7F06VIMHDgQgYGB2LJlC/Ly8vD6668DANatW4fCwkLs2rWro09cXBwAoKGhAeXl5YiLiwOfz0f//sqvKLuiVwWaiIgIfPvtt4iJiUFxcTGOHz+OmTNn0horr7YWf9E8uOzMT1OCcSgpgVien4W2PyzSmpSgfi6IJdxq2zZjFn65HUm0RTelnwteHTAQsw/tJ7pWO2McnfCf0PNKKy50xSx3D8z28ISXmRkOJCYgubwMcw8foG2Atj/xHvYn3oOtvgEcDQ0BAJuDX0C9RIzd8XFIKCtV4ezbrhddVEBbl8tcVxdbps/AhF3bKRcIVzU3I7G0FDPcPHA4OZFSn7TKSjRIJAiwtEIMQeX+uksXUdZI7lSrADB25zZaRc+PstTHDwllpbTq05RBoWR1P52CzQULFqCyshIbN25EcXExvLy8EBISAnv7ti3a4uLix2pq/P3/v0g9JiYG+/btg729PXJycmjP/Wn0qq2zxsZG+Pr64rffflN6rG0vzIKbyESpMTgsFgZbW9NKBPA2N8f+OfOJ+vDYbGwcS5aq6m5iAhdjERIInn45LBbeCxxBLG0DtNUmeZqa4afImypxK+2MqXZb5TmHzcY/sTEYsvWvjjmqwmUzv64WEQ/m/N+rl3CvtAR/TpuBpSpQF36UjKoqrPD1pzV2Tk0NQrMy8fKAgUT9tsXGYBWhC+fxlGRiW/Gs6ioMsrYh6tOOvkCAYBeybLeuuFtShAGW3Z8QoACgUCjxonndN954Azk5ORCLxYiJicGoUaM6frZjxw6EhYU9PE+F4rGXuoIM0MsCTVBQED7//HPMnj1bqXG4LDYGWVkjp6ZGqXG8zcyRW1uLuifkuD+NCY7OxC6ao+0dkVJRgRKCPfqlPn7YHR9HtIUw3skZ+XW1tIozPxg+Ev8aOJi439Pgsdl4a0ggzi5aChNtbRxJTsLVnGy1ytdUNDVhz714TNmzE2E52TDSEmK4rWqNtS5mZWD1oCG0Dq5/uX0Lczw8ic6/oosK8fPtm0TGaIeSEvADoVusAsAno8YQpVS3w2Vz8P5wchWER4ktLsIAC80kBDA8Tq8KNKSIxeLHCp+Atqf8rOoqpW2b6yQS/E7z0HGCkzMuE/qcj3N0Ik4CiC0pxuFkssP8i5kZeDPkNFEfAJju6o4xDo748PJF4r5PwlgoxOmFS+EmEmHqvl3EnjvKUi8RI7+uFua6Ovhs3AR8O3Gyymo0iurrsfbiOfwSNI14zLLGRkzYvZ042F7KyoQfQepvvUQCW30D4mSJy1mZtFQCcmtrwGaxYKuvXMX6hcwMfBpOv8CYLppQBugN9OlAs2nTpoeKnmxt2yqPOWw2DiZR26d+GkX1dbSsaFkADiUlIqGUbO//k6uXcCo1hXJ7Mx0dnEy5T+TxMt/TCxOdnNFIqDjAAjClXz+8fuYUcRbdk3AViVDV3Iz1Vy9hdciZbg8ynUmpqEDQnl0ob2rC3tnziGpZnsbN/Dy8fuYkrcPvltZWfDNxMpFDJY/DwZbpM4kUGhwNjfAK4Tbd5ewsjKcp2X8zPx+DaW69tdMklWKIta3KzOiooilRzZ5Onw4069ate6joKT8/H0Cb1zkdifxHufHSq9Djk9sna/N42HUvjmg/1sfcHMEubkQaZV+On4ixhH/sL/kFoJzGDZ3DZmN1yBlkVitfl8TncPDj5Kn476i2SvqoHlLoKZa14psb1zDv8AGwWSyMUoE2FwAklJVilrsHvMzMiPs2iCUdqdtUaJJKcSs/D2McHCj3icjLwVAbW6Jn7ZiiQrwXep6gx/+zIewyjtJMqe/MSj9/lTnAMihHnw40AoHgscInANg0fhLcTZRLBLDQ1UVzqxT1EvLzmbWBw7GM8BB4Sj9X2BpQr73Q4nIx0NIa1wkO5H3NLcBigbiA1FgoxKWlK1VSL2MsFOLAnPlolcuw6tRxpcdTB01SKURCbWwYMw7vBQ5XyWYHn8PFmsHkhY6HkhMwt78n0RwuZ5Nta1U1N6O8qRGuBMkzUrkcxlpCWNFQc+ZzOJhNmIDQFZnVVcTmb8rC+NF0TZ8ONE9isJU1yhuV09zyMDFFSjk9e4EASyvcLSEzegq0scWtBysyKoywtUdsSTGR6Ka1nj62x94lmhcArPQbgCvZWSo5nG+WSrE/MQH/Cb3Qo71qShsbMPvgfgy2tsGaIfQq4Ttz7H4SPM3MOhQMqJJSUYHIgnwiZeeLmRn47tZ1ouvMP3wQqZVk7q/T3NwxpZ8LUR8AkMnlWD+Kvi5cO5nVVXCmkZCgDEplnD149UV6VaBpaGhAXFxcR7FRdnY24uLinui78CT4XA4qaSjhdqa8qZGWHLmAw4WjkTHuEwQpPocDcx1donqOlMpy/BhJli0UkpGGA4SfSY/Px4tePrSLVjvzbuBwGAu1Kdd5aJpacQteO3MKmVWVSo8llcvxR/RteJuRKxSsuxxKpOzcKJVCh8cnkuDhc9iYRSh9c7eIXuZXo1SKmpYWWs6inTmVmqKS7yWD8vSqQHPnzh34+/t3FButXbsW/v7+WL9+PdE4FzLSlZ5LUlkZrUQAPoeDTdfCISU4a5HIZBj+zxbK5zMsAHp8Ae4RJBvM9uiP94aRp5UqAHx0OVRpK+bF3r4YZe/Q69Sdq1uacTY9DUt8fJXOlNqXcA9H7ycRJxpwWCxcWraS6LxwlL0DFvtQN72SKRT476ixRHO7W1KEACt6KcbJFWXwMCE/s+pMbUsLXIzJVojKwiQDdE2vCjRjxozpstBox44dRON8fi1c6bmcW7yclptgq1xGvGqY5e6B/qbU/+h8zC3w7cQpRNeY39+LWF1Zi8uFp6kZQrPIzNcexd/CEmsGD8UbZ0/16O2ypyGVyfHntBeUtrkOdnHDZ4RFuTKFAvElJZjuRr3Q8VJWJlFWWE1LC4rq64nUlUsaGvDSSXrnbB9fvoSwHHpGgu3IFQr8OW0GeGz1a+21wwSarulVgUZVjHWgl3bZjpDLhaWeHopouET+NCUY4wgzwVb6BYDDpv4FHO/oRFSj42BoCDsDQ1wjLCBd4OmNRd7KW8HWtrTgrXNnerXr5sGkBNwrLcEX4yYoNU5Ebg4mObvAXId6yjIAHEpOxHxPb8rtM6uroACIDstvFeQRpx23tLbCiaZK9kh7B1r92lEAyK2pgcMDWaHugEkG6JrnMtAolDxxcxOZIKOqkpZcxABLK8QTZHXpCwSwNdBHUhl1zabxhMWgfA4HX9+IIFIP4LHZeGXAQGy+c5tyn0fhsFh4N3A4ihvqe0wKszJsCLuC5PJypWps6iViHExKwMsDyKRibhfk40JGOlHV/+Kjh5FFkI7+U+RN7IyPJZrXaAcHLKEhs6PN42GDEkZx7WRWV8HJqPvsIBi65rkMNFk1ytV6iGUyWokA9gaGaJCIiRIRPExMcbuggCgIfHEtnKgYtLi+HicJCkEBYKyjE1IqypFSQZaJ1JkPho+Ci7FIaSvtnoJEJsO22BgMsbZRynhre2wM8TamAsDmO1EwIFAYqGlpJvK2aZRKsdzXnyiY3S2mpzlWWF8HA4GW0gWXv0VF4i6BIKiyMFlnXfNcBppCJRWF71eU4xANZYFWuRw/R94i6nO7sAD/OnuKcnsXYxHSKisor7YGWFphx8w5RHMC2lJk/33+LHG/doJdXDHO0Yl2UV9Phs1i4dep02CirU2rf2VzM67mZMOH0LjK3sAQJ19cTLm9VC7HJ6PGwkiLemr0DHcPeBF41CSXl8PRyBgCDvnZVUpFudIFl/l1tdDhdZ86QFuwUOaMptum2q08l4FGWY+K7TNm01J+Lm9qxInU+0R93hk6DLoET3UfjRwNP3PqT5DTXd2Is/AmODpjppsHsUxNZ5qkUvzrrOrkanoSN/LzsOdePH4LmkbLAAwAREJtbHthFtG/fW5tDWpbxJRXU61yOa7n5WIsgZ15ZH4+htrYUm7fKpdj4dFDxA6fAPBe6HmlLRocDY3w1YTJSo3BoDzPZaBRBhbaVgF0nDmPL1hEpGhrpCXEEh8/yjdjbR4P/haWuJ5PTQ2Aw2JhqosrzqanUp4TALwTOAxlNNOQdfl8vOwfgKs52UhXQf1JT+XPO1G4npcLIZdHq39xQz0uZ2cRn2+cTkvBC27ulNtfzs7EGIJAc6sgD0NsyBICyhsbaSk5N0qkRNmWXZFdUw37bkwGYLLOuoYJNIRY6emhpqWZqOIeaDtwtzMwRFZ1NeU+/paWiC0uorwNNsjKGnElxZTN1HgcDj6LCCPK9hpoZQ2Fok0Mkg7/GTYCNkrWm/QWfou+DRNtbdpyR1ti7mCxtw9Rn6P3k3Ahk3q6+fmMdLx/6QLl9jfz8/CvM2TK3gMsLfEWDXkdOwMDfDRiNHG/zrS0tqJOCbdOUhQqePVFmEBDCIfNxokUsu0voC2FOL+2hsigy07fgMghMLakGBvDr1Jur8cXEG+bmWhrY29CHFGfdhwMDTGlnwu+J/Q36c14mJjii3ETafXNqq7CjAN7ifpUNDUhq7qK8pabRCbDOAcnmOnoUGovlcsx0dmZ6Pwps7oKjjQyv/Jqa2FnoPxDyabrEUqPwaAcTKAhJK+2Fj/S8JQXt8qwKz6OqM+O+FiiazkZGRNV6H89cRJGECoQn89Ix/5E8ow7oC0t/I/oKFpCpL2VkIw0aPN4GGhlTau/vkBArBe2bsQoTHSiLpo5uZ8LUX3MdFd3In+avNpa2OobEKd9V7c0Q8DlQIdHb/uxnbDcbKX6k8BsnXUNE2gIeWXAQFpWs7m1NcSKAK8OGAgdgsPgP6ZOh56AmgwJm8WCv4Ul7hRRT/30MTfH95PIFAc6cyEzg7gOoy+wKz4O013p2RNz2Wx8OHzUsxt2IqqwAIOsqAeOhNISeBNkkqVWlMONYDtQIpPh1TMnaalcrzx5nEiuSeMwe2ddwgQaQvwsLCCVk8ukfDluIiY69aPcvt2+mOp5i6m2DtgsFsooqlK7m5iiqL6eaHUR1M+Vtv31Mh8/rBk8lFbf3s6R5ET8j2BLszMZVVWQymVE0i9RhYVEK5SEslL4EKxQUisriSwDACCzqgr6BGZr7RTV10Gf4sNTj0DZ1QyzomEAAHsDI+TV1hD3cxWZoKyxgXJ7R6O261AV0vQ2NydKBa1qbsJXhHvXU/q54DxNQdIlPn64RuCN05eQyuUYZGWNFwkkYjpzPiOdaIszs7qKaMv1bnERXj9DvVbrSnYmNlwls0l+JWAgUTZcO0t9/DDbXXlvGgbNopwC4HNISWM98mrJU5udjIyIMs5cjEVE/h/3SkuIClEVChCZomnzeAjPyaGVkhxoY4uW1lZiQzW6uBiL8JL/AOyKj0NlcxPWjfj/racTKfcRnpuDHycHIbe2FltiookzCOlQ3tSEHyZPxeHkROI6rl9u3yLePgrPzYaJtjYl+2upXA4/Cwskl5dTUs9ubm3FWAcnhGZlUJ5XVnUVrdqzvNpaeBMWrmoSZav7mYJNBgDAy6dO0EptPp+RTrRNdTY9Desuh1Jub6qtg+wa6oHszKIlEBFkDjVLpfg0nOwptp0mqRTf3rxGqy8JfA4HHw4fhd2z5iKtshIVTU1okkoRmpnZ8Wp/SAjNzISptjYuLllBXIFPh6zqKmRVV2GiM/Xt03akcjmW+/oTiUPO6++Ffw0cTLn9THcPBNpSL8RcPXgInAgEObOrq4nat5NTUw17A0PifpqCSQboGibQEOBuYoK1Q4cR95PIZPjoCvWgAQDTXN2IqsK3z5hNeS/bydAI9WIxpafddo6/uJhWqqm+QICs6mq1b5tZ6+lBKpOhRtyCKXt3YnvcXZQ3NaJBIkFIRlrHqz0Yh2Sk4eMrl/BmyGnk1dain7Gx2m9o/8TGwI5mDZGVnh6murhSbh9dVEB8TkOWEFBBlBCQVF6GnXHkiSD3K8qxLTaGuB9Dz4IJNAS4iUxgpUfu+hfs4oY3BlF/ugSAD4aPBJ9DzUfDTEcHMoWCcuAYZG2DqELqoo2Wunow19GhtWX4sn8AVg8aQtyPKnYGBvhnxix8M3EKFGiryK8hKNCLKy1BTUsL+hmLcGT+i3hrSCDl3zspV3OysYWm4+OV7CyMIbC3uF9eDlt9A8qilAmlhIGmsoJoK6xOLMad4kIiQc72follpUopYncr7Qf6yrz6IEygIcDOwBC5NBIBPM3MIJVR32PX5fOhxxdQ9rvxMbNAIkEiQEJZKfYmxFNuP8bBARG55CsSHpuN+Z7e2JdI/VokjHFwxNH5CxGRk4Nlx48oNdb5jHQE7d0FR0ND/Dg5SEUzfJygfi5YP4pc/j6muAgmQiHlIChTKPDexfOUs2XjS0uw9uI5yvM5kpxInKq+e9ZcuIjIHS/3zZ6vksLN7oBRb+4aJtAQIOByaR2GOxoaIZswESCN4DrJFWX4LSqScvuKpkaiDLXyxiYcu59EuX07U/q5Iqm8jNZK6GkE2tjC09QMd4uLELxvN3bExyotlAq0VdW/c+Ec3rt4HvoCAb4aP4m2AvOTuF1YgBfc3Im2RYE2ccpxu7YTOZCG52ZTtneWyGSw1tOn/HmrW1qIU5yzqqvhZEh+TpNXW9OrzmkYHocJNAR8d/M6rfTe8sZGpFVRzyBLKCvFGwTWAHwOB/cryim1tdDVxYkF1KXkWQCu5GThdmEB5T7t3MjPxWcR9OpHnsQASyv8OHkqBFwu6sRiynVDJDS3tqJZKkVZYwN2zZyjtD1zZ6qamxGRm4NZNFJ23U1MsMqfuiGan4Ulfg4Kptz+RS9vjLCllkYtVyjwW9A0ooCZXVNNy4QstzcFGqZgs0uYQEPAuhGjoE1DDmN92GWip3ovM3Mi1d9dM+fCVJuaVpWXKVm9jbuJKfbMmku5fTsGAi24iUxoF3h2BQvAxjHj8cmVS2o3s5LK5fgh8ibSqiqxwm+ASsf+++4dFNOwrZa0yvCiF/VanISyUrgTrDpSKyqIVJaza6phRxAALmVlIJZGintIehqSCDT/NAmTddY1TKAhYKmPH9HWBdBWf/L71GlEfVb4+cPLjJo8OofFgom2NkopFoM6GBoS2fe6m5igsJ7cKG6UvQMWepEpDz8LXb4AEXk5uERgU60sX12PwJk0MvfRZ3G/ohzhudnEB+M5tTWw0NWjfE7T0tqKOomYsmBmQV0drAmy4koaGmChq0u5fWJZGW7QUP2OKS5CTDe6ZDKoHibQUESHx4NY1kq5Ur8dU20d4r1sS109lDRQCxzmurooa2ykrAodW1KMcxlplOfiJjJFKg275kAbW9wqyCfu9yQ4LBaEPC6+uaH+epzOlDQ0QK5QIJggtZgKW1+YhUEE6cdA23ZVYlkpkc3ClxHhlB+ObuTn4dfb1B1gf7l9C/dKSyi3dxOZ4Nj8hZTbtzPM1g5/T59J3E9jMNtmj8EEGooYaglR3ki97qQdqtXZnTHX0aUcaJqkUnx9g7qUTEJZKe6VUt86y6iupBUwAm1tcauAnmdNV8zy6E9bbl9ZZHIFPh0zHsZC6pbHzyKmuAjDCJwq21l49BDRivRCZjrlQFMnboEhwWcsqKslchCtam6GGcEKqJ2alhaVJ2WoC2brrGuYQEORwvo6TN6zg7gfn8NBeiVZptqac2co66I1S1txkcDoKmz5KqI/2iPJSbT2x18+dUJl5zN8DgdvDQ7ELwRP26qktLEBx+8nE1XaP4tb+XkYamtH3M/bzBzTXalrhi3386dsOqYAsGvmHMpbc+McnfBu4HDKc6lqboKIRrCubGqCSNg7Ag2TDNA1TKChiLORMZHlbTu3CvKxPuwy5fYCDhcKKCin674aMBBvUCyIFHK50OXzKa+wjLSEOL1wCaW2nfEwMVXp38scD08klpcq7R+vDJvvRMHPwpL4XOVJxJUU4xLBA0I7+gIB5vb3pNw+p6aGyHSsuKEelrp6lNq2ndFQawu01fbsS7hHXBBb1dyE0Czy3xVDz4EJNBQJsLLCOEfqldntTOnngmEET65ORkb4nGCLyFpfn7KYpoOhEdEqw83EhKjKvp2XBwTA38KSuN+TOJGSTKwWrGqqW5ox7/ABIofUpyGVy7Hl7h3i1OmUinIia+js6mo4GlIPNAV1dbDRp6Z+UdxQT5QMAACfRYQRJ9RI5XJ8FhFG1EdzsFTw6nswgYYiIqE2qpqbifuNtLOHlR71pz5LPT2UEKS+2ujro6COWup0c6sUewhsmN1FJkQK0u0MtbFDpIrOZ2a5e6CfsYiSqnB3cHT+QpVVqa/yD8DbQ8i08yqbmyFXKCjr2uXX1eJEajLl8X+NikRGFbUzoJKGBmy+E0V5bADYNH4iAiytiPoAwI4ZsymvtDQKs3XWJUygoYixUIhKwkN9oC3rrJygqNBCl3oiAABcysxEJsXD4ZyaGhxKSqQ8dk1LC5GVANCWPi2RtaKQRp3Io+jx+Vg3YjStVZW6uJCZQRwcnkR0UQGRYnI7I7dvRZ2YmhJ4q1yOP6KpB4OksjK0UjT2k8hkCElPI9IhE3C4sCR48GpHh8+HqU4vOadheAwm0FDk16hIHE+h/mTYjqFQiHKCABWZn4+DBJbPO+JjUUlxpfXFuAlELp8nUu8jLCebcnugbetl2fGjRH2exKoBA3EhMx35FFds3cHO+FgE2trClYZm16MklZXBzsCA2EHS28wcQwky1n4LmoZRFI3TJjo74+ORYyiPfWz+QqJq//KmRloZZL0mIYBZ0XQJE2go0t/UDCwaB8HzDx/AfYKsrTqJmPIKxUJXF2cWLqU8tqvIBOUUs9lYAI4vWER8+D3M1g61YtWsQOwNDPBb1G2VjKUqWlpb8Z/QC2iUSJQeS6ZQ4Itr4cSH405Gxpjp7kG5fWljAxwontOQnNEAQHFDA9GWVlJ5GepaqPsytRNbUgwx4dmORmDUm7uECTQU+WTkGJjrkNcAvDJgINFDyo+Tp1I+SLfRNyAyU3M0NEI2xWQAWwMDGAgExGKV30+aohKZfQGHi3cunKOseNCdXM/LBZfNoWXk9ShHkpOIjfRSK8vhbmJKuT1J5llhXR2sCAJNKWHm2anUFByjsTPwV0w0btJQFWDoGTCBhiIibSGqmsnOaPT4fLxOWHthrqNL+eZqpadHOeOMy2bjUlYm5dWGm8gUKYSJAC7GIlQ3txAXqD6KSChE6NIVavOFUQUDrazx0chRz274DJyNjHGUsFo+vbIKzkbGlPOT7hYXIY1iLVdFUyO23aVuNHYxK4PI2dVVJML7w0dSbt/OWAdHLPb2Je7X3TA2AV2jOlnaPo4Oj496wu0SPYGAeBvJUEsL1c3U+lQ0NeFGPrXD+la5HB9evkh5HjKFHFEFZIrNzsbGSKGoIv00RtjZ425JEXEabHdyOi0F60ePgYDDhVjWSnuc3Noa2BkYggXq2/NiWSuGbdtCuX1SeRnlolsFgB1xdymODOIzPC0uF4OsrIn6AIBIWxv9Tamv4jSGsucsfTTQMCsairx65iTxjU/I5aGZcFvkr5hoNFDcDruZn4fjKfcpte1vaoYvCepzrmRnYQehsdX1vFx8RSCH8ySGWNvitgp10tSBRCZDcnk5/C2VqxdqlctR3dIMU4rCl+0MtraGkRa1KnsjLSH2z5lPeexzi5dTluWf2s+VyMitUSKlpYDeLG0lUjRn6FkwgYYCbBaLeNsMaDNseunkcaI+22JjKJ+LvDJgIGWxR3MdHSKtrpf8ByCQUIvLzsBQJauQqMIChOfmKD2Ounn7fAjuFFG3xH4SW+5EExeCrvQfABeKkv5NUin6m1JTAweARqkEegJqPjMyhZwoSDZIJLTS1WvFLWiUKp+AoXaYZIAuYQINBXT5fOydPY+4n4GWFqwJDlZ1+XzcWvUq5fZORkYQUKwsNxBooYZgG2+glTV0eGQukG8PCYQXge98V/DYbJxOS6FsY61J6iViTHRyVnqcXffiiM+1KpuaYUwxTVgsawWPzaYsgFkvFkNfoEWpbaNUCh0+9ZVGaWMDFh87TLl9O9fzcvHfq9SlnDQFS6H8qy/CBBoKtG2Bke/De5uZ49UBAym31+XziVYE+gIB6sXUnvKaW6VEcv8ioTYqCFdxNgRyOE9iSj9XfDNxslJjdBcyuQJfTZisdNLCawGD8ArB9wRoF6ikXldyNSeLstzNhcwMysXJRfX1RGrgbBYLH48cTbl9O1Z6enjJX7UGdGqBqaPpEibQUEDI4xKnoAJtpmfNrdT76fD4RPUZJQ0NlFWeL2RmYDvBIa+4tRUVhLIv1vr6tEzSOjPIyhpxJdQ9TjSJWNaK1MoK+JhbKDVObUsLbAllbf6+ewfnCXyFVoecQQPF79b+xHuUpYeyqqvwU+RNyvOQKxRY6uNHuX07+gIBZrhRrx1i6FkwgYYC1c0ttCTqtXl8ogDV0ipFSDr1m8dnEWGIp2g8tdDLh+jMZdmJoyggXJ2sCTlDKyB3xlUkwn0VZK51Fynl5UqrBBTWkxVJAm0PAkYEZ27vDRtBeZ6vDBiI+Z5elNoaaQnxR/B0yvMA2hIpSFeBvSYZgDmj6RIm0FCgQSKmJVN+LS+HaBVRWF+P36KpV8KvHzWWcubRYGtryskAHBrbG0IuF5nV1OspnkRoViYtR09N8UvULZxOVc7qOau6GgkE208AEGBlTaS55mIsgrUetWDG53AoF2G2yuUYZEXmFNrcSp551iSVQsjrBdUYzNZZlzCBhgJDbGzx57QZxP1a5XIixecRdvZYN4J6EWCwqysUFL+Z+gItytk+RkIhprq4UZ4H0Hbj2zh2PFGfrtgWG0OkdqBpmqRS+CppiVBYX4cfCbafgDa3SpIswpqWFhhqUTvgrxeLocenlgjSJJVAhzBojPjnb+LMs/KmRozb+Q9RH4aeAxNoKKDN5aGF4KylnWU+fpjXn9oWBACYaevAgOLNAAD0+ALK++4KKFBN8Y9bJNQmVqo209GhfF70JIbZ2hFvw2gaPoeDHydPVXqcw/NeJNpOqmpqgohAnLKgrhYsiloCOTXVKG6glvUnUyiQVllBpOA8ydmF8kq8M/M9vYn7dDvMiqZLesFaVPNo8bi0ss6EPB5R2qoOn3oyAJfNRq24Ba1yOaX2L586QXkeRkJyuR1Se4OucBWJlM5a625qWlogV8ghEgopq2h3hUgohJmODuVzscL6enx1nXpx7K9RkZTbRuTlIoLAHmLmwX2U2wLACj9/5NfVoLqF7Pf131FjsDchnqhPt8MoA3QJs6KhQF5tDcJyyaQ2gLass0aCw/GalhbKplOtcjkCt22hPPa/hwSCR7GOIrIgH6tOkRWa3szLQ2hWJlGfR3E1NqGsydWTSKushIuIuutlV5Q0NBCJtoplrbhfUU5Z78zP3ALBFLdD+xkb4wMCPbL3h4+EiGAbr1kqpXWwL5a1QsBhno17I0ygocC90lKcSUsl7nc2PQ2xxUWU259OS8H+xHuU2hpqaWGFrz/lsf81cDDl1U9/UzNiF8TkinKldc7SqypVUmnf3fwv/AqSCawguiKqqJByQWU7J19cTHmr1cbAAOMcHSm15XO4RH43o+0dYExQ09MkpSdD09La2vMTApissy5hAg0F5nh4Ys3gocT9bhfkEynbvuDmTtmYTF8gwCJCNVuqq/LBVtYYT1jx/suUYIyydyDq8yjb4+4S/b56Cs1SqdJP2j9F3sTtQjIR01a5grJfkFyuoHyOIlfIibyXZHIFSGyLNkZcRTSNB4pFRw+jnqKzqKZglAG6hgk0FNDh8YhdEAHgu0lTENSPmhYZ0JaC6mhoSHydvsKvQdNU4lzZ3Szz9cdUippzT2KFnz8G0lA1VgdSmZyoWFcqlxHJ2xsItGipKYiEQqKkA4aeQ68LNH/88QccHR2hpaWFgIAAXLt2TdNT6hUM+vtPTU/hmVjq6vVoDxp14m1mTmys93dMNOUC2fOZ6fhP6AVKbTOrq4iSR+Yc2o/0Kupna2uGDIUfjZTwn4OCocsnf+DrVjSUdUZ6XwwPD0dAQAC0tLTg5OSEP/9U7/2BONBcunTpiT/766+/lJrMszh48CDefvttfPzxx4iNjcXIkSMRFBSEvDz1Ou8V1tchk+IhvTI0t0rR0kotu62grg7zDh+gPPZEZ+pbYcdT7mNLTDTl9gBwOTsLBXW1RH0YlGNHfCyaKX5fbPUNKJ+7mOno4GX/AMrzmNffi6imh0G1kN4Xs7OzMXXqVIwcORKxsbH46KOP8NZbb+Ho0aNqmyNxoAkODsa7774LSac03PLyckyfPh3r1q1T6eQe5YcffsCqVavw8ssvw8PDAz/99BNsbW2xefNmtV73cnYWDiQlEPe7lpeL3Noayu3/iI7CrntxlNoKCQ2kSLxodPl8GBLWORxOTqScMfckkspL0SRRTsJGE5xNT8V1gnTgrmiUSIktFq4uf4lytpenqRnmePSn1NZYKMQ0N3fK81jq4wcTgpqevgwLSp7R0Lgm6X3xzz//hJ2dHX766Sd4eHjg5ZdfxksvvYTvvvtOqc/+NIgDTUREBE6fPo1BgwYhKSkJZ8+ehZeXFxoaGhAfr74cd4lEgpiYGEyaNOmh9ydNmoSbN7uuqhaLxairq3voRYeJTs5Y6OVD3O/Y/WTKzoYAMNLOHoMpBg+RtjYtS1wqTHRypqx11c5X4ycR+9c8yoawK8jqhckAaZWVyFdyNbc+7DKxzBG/l6b6/h1zh1hyBwA+vnKpd3jSqIBH71viJyRB0Lkv3rp167H2kydPxp07dyBVUqvwSRAHmiFDhiA2NhY+Pj4ICAjArFmz8O677+LKlSuwtVXuRvM0KioqIJPJYG7+sN+Jubk5Sp6g9rtp0yYYGBh0vOjOz1JXD05GRsT9Phk1BmMcqKWUAsBgaxtae9c9AUMtLcreOE9i3YhRlJ0dexLvDB1G60GkM1P7ucLdRLlanN5Cbm0NLZmhxLJSyin6GkNF6c22trYP3bs2bdrU5eXo3BdLSkq6bN/a2ooKNekM0koGSE1NRXR0NGxsbMDlcpGSkoImQskSujyadqlQKJ6Yirlu3TrU1tZ2vPLzu9ceWCQUQruHKM4uOHJQ01N4JgGW1pSdHfsa452c4GxElnF3PiMNYorbbdfycvHtzeuU2qZWVGA+wfnfqlPHkU0gqPr5uAkYZmtHuX07J19cDAOKhmwaQ0XJAPn5+Q/du551LEFyX3xS+67eVxXEgearr75CYGAgJk6ciMTERERHR3escG7dIpfSp4qJiQk4HM5jUbqsrOyx6NyOQCCAvr7+Qy860LWfVSelDY1YezGEcnuStNDL2Vk4kpxENJ+k8jJadtcM9PksIoyy1p2Ay6HsmGqgpYVxjk6U5+EiElE2VWOgxqP3LcETyivo3BctLCy6bM/lciFSU3kBcaD5+eefceLECfz666/Q0tKCp6cnoqKiMHv2bIwZM0YNU2yDz+cjICAAoaGhD70fGhqKYcOoy6XT4VhKMn4nkO9vJ7WyEpUEN9/fo29jZ3wcpbYKKIi2EfbPmU+5bU1LC7G18K9RkUROi11R3dLc87dGuuBWQT4SypT77HTYOXMO5Sf8wVY2eGPQYEptLXR18fpAam0B4MPho2CpR81WoM/TzenNdO6LgYGBj7W/ePEiBg4cCB4NxQYqED+GJCQkwOSRvWQej4dvv/0W06ZNU9nEumLt2rVYunQpBg4ciMDAQGzZsgV5eXl4/fXX1XrdIdY2MNTSwoVMssPaP+9EEbV3NjKGVC6jpPdloauLX6ZMw6Q9O4iuQYU5Hv1hqaeHTQSijW8PHYaw7CzEUTRi64pXTp+g3VeThOWQ6+A9yn+vXiYOsv2MReCye18B46nUFGRVk2co/hUTTeRYqwmUre6n0/dZ98V169ahsLAQu3btAgC8/vrr+O2337B27Vq88soruHXrFrZt24b9+/fTn/gzIA40jwaZzowePVqpyTyLBQsWoLKyEhs3bkRxcTG8vLwQEhICe3t7tV7XTWQCWwMD4kDzWsAg3C0uoiy3MaWfC+rF4l4pLOkuMkFcSbFSYyz39ceFzHSlVaC7m38PCURJQwMO0kiBb8fT1AzFDfXErqa9kfMZ6bT67YiLVfFM+gbPui8WFxc/VFPj6OiIkJAQvPPOO/j9999hZWWFX375BXPmzFHbHHvdxuobb7yBN954o1uvKQd1najOuIpEKKynfuOQKxTgUBRWlMkVRE+zH166SLmtVC4Hj01WoS+Vy5Wu6p/o7IyUivJeF2hMdXSUnvNyX3+cSkshCjQpFeWQyKitgmKKiyh7zGRX12DteernfxvCLhPZO/w+dRoOJiYQWREAQMSKlzFt/27U9WS9Mw3ZBDztvrhjx47H3hs9ejTu3qXu/qssvU6CRhM0S1tpHXY2t7YSqdQ2SaWU3Qorm5vw/S3qroxXc7IpB8voogKE5WRRHhsAMqoqiYPTo2RWVaGfce/TOnMxFhFJsHSFma4uygiD1apTxymnCTdJpZTnqM3jgc+l/m9ZKxZTVrQA2txeSdq3Y6hFr1+3whifdQkTaChwPCUZn1x5svTOkyhtaCDadz+ekox9FG0CWlpbEZGbQ3nsw/NehK2+AaW2aZWVuEb4tPnz7Vs4m05upfDodfsZGys1hiZIrahAeqVy9QfmOjoobaQuZKkvEOAzAuvsFX7+WOk3gFLbQdbWeHMQdbXyQ3MXED1QafN4aKJx1sLncIjVExh6BkygoYClri7GO5LJ5gNtmVjH7idTbi+RyaBFUO19a9WrlM3MasQtMNCiJkjoZGSM0wuXUp4H0OZhs9BLOavdQ0kJ2Bh+VakxNMH6sMuop5hm/CTeOHuayArbTEeHyDPIQEuLcoq+Hl9AVFCpwycz+LuWl4vyRrKsRjaLhRMp94n6aALGJqBrmEBDATsDQyz28SXuN8TaBhMIAtQgK2u8N2wE5fb1EjH0KNoX1La0wJBiKmxNSzOxdpW+QEBkidAVrXI5XiIQc+wJDLG2wfpRY5UaQ8DhgstmQ0agtS8SahNZRxsIBKgVUww0Aj7qxdQtxeWKtvNFqvwUeROlBEEVaBv/w8vUzxk1BmN81iVMoKEA6VlLO64iEwwlkL1pkEigw6deGV8vllD2yTmRkowiiofBNS3UVz/tlDU0wFyXTOb+URQAXhkwsFcJNPY3NYNMoVztj6ORIT4bO4GojzaPR3QAH5qViUSKdU4ROTk4lkKtYJeFNodREg7MmQ9dgu85AJhoa2PbC7OI+mgE5oymS3pd1pkmaGmV0koGaJRKiCRoGqUSytXbALDnXhwaKaodn01PozyuXKHAnnvxRHvixQ31EBHY+T6JtMoKuIpMUNGkXusHVeEmMsGdYuXspy119VBC8SGgnas52bhKUL9zkSA1v6qlGWKKh+6tcjnR9jAAeJmZUx6/HV0+H9Z69JQ9GDQPs6KhQFZ1Nd4MOUPcr1kqhZBgJZRTU4PfoyMpt991Lw7lFJ0QX/YPIKr2/uJaONHBa3NrKwb9rbxdQ0pFBfqbmCo9TndR09KCpDLqCt1dYa2vT5QGDwCj7R2IbCLOLV5GORnkw+GjKG+DuohEOL5gEeV5AG3bbVLC4lQhl4eWHl6sCTBnNE+CCTQUUCgUsKahk3YxMwPvXTxHuX29WIxYgqLHL8ZNoHwGJJHJKHuXAMB3E6fA19yCcnsAeMHNHZa6ykmR/BYdiZ3xvacw76sbEbhfUa7UGDfy8nAgkazYc7yjM5yNqGfoGQuFlOtP9AR8yskAOjw+GgkSIXhsNuUC5s60yuVIJLDc0BjM1lmXMIGGAlpcLn4LIpfXMRIKMd6JejKANo+HK8teIrqGoZDiAb+4BYZa1JVvBVwu8ZnLZGcXeJmZEfV5lDqxGPM8vXqFN/xwWzu8PVR5nb1GqYRYksVYKCRKBtAXUM8k0+MLKAclXT6fsrAn0FbYu/T4Ecrt20mvqqRVYsDQM2ACDQWaW1uJtsDasdDVxWsBgyi3b5JKiZIO6sUS6FH0UM+qrkJyOfUn76rmJqIVENBmeU1n5fcoi7194d4Lts9G2jmgWQVGUZuDXyD+vCJtbcpq2Vw2G4eTkihnhh1PSUZOTQ2ltqWNDUTSTCba2rSy9HzNLSjXAWkUZbfN+uiKhkkGoECrXA4OjSfsJilZtpoC/y/lQuV8JKGshHJBaGJZGRIJzhISykqJb6IFdXWwUUGguV1QgCHWNkju4VslQ2xs8L8wsoyrrrChcUaz8uQxyv/2rXI51oddpjz2cYJ6lbTKSiJtPiMtIQZZUz9basfWwACepsqtlrsFDUnQ9HSYFQ1FVoecJvbzbpJKICQ0Pvs9+jZYFK90Nj2N8tOkmY4ONge/QHkeR5KTiDLVAOBwciJ+jKQui/MkIgvziYoRNQELQGVTk9LnBnxOm09MFcE2GABMc3XrMKt6Fs5GxvhlSjDlsa+vfIWy/cC8/l6U7QeAtu1hOqtAIZfX45WbGZ4ME2goklxeDi7FKvx2Kpqa8NLJY0R9/rwTBbGMWurnICtr/IdigWe9WIxhBDU9riIRPh5Jpsbd0tqKKf1ciPp0xbXcHKy7HPrshhqExWLh5dMnlPbP4bLZ+CwijKiPLp+P/44aQ7nA087AgPLWL4fFgrFQSPk8h3SrVMDh0BIg5bLZxMFYIzDJAF3CBBqK/DntBTgT6nC1yuUw09UlClC/TAnGcIo2t1KZDIOtbSi1bW5tRZNUSrkYsk4sJq70lysUeGfoMKW3z5pbW2GgJSBKx+5OdPl8XFyyglYR76Nw2WxiewFXkQlSCbzdHQyNKFstm+vqorypkfJ5joWuLorrqdcARRUV4q3zZym3b2d/4j2VrJbVDZPe3DVMoKFIZXMTrYLEr8ZPgpmODuX2DRIJLCimCBfUk52JXM3Ohj7FLZGShgbo8HnQI6zgvpmfT8sP/lEqm5qwwte/R4psrvIPwO3CfDSpIBHg96nTKT9YtOMmMkEKgYhnS6sUd0uKKLcnCXyFdXXIqKKeMTfCzh5DbaivrNsJdnGDq5pshhnUDxNoKFLZ1AQRDWmU8qZGIkmVksYGWFJMK65oakJBXR3lVOCProQSpdGG5+bATIcsxflWfh4CbZQPNM2trdh8Jwprhw5XeixVYqQlxBIfP/waRb2w9knwORz4mFvgbjH1IAAAp9NS8MvtW5Tb709MoGw2VlRfjz+iqTvD/hoVSWRjPdreAa40rCBmuXvAgvC7yNBzYAINRU6k3EcaDSn4iqYmmGpTX9HEFhchv66Wcvt5hw9Q3uYYZe+AhV4+lMd++3wIMgnrOy5kpmMDQYbT09ifeA+tKjBUUyWtchneDz2vEnM2fwtLpFSUo5lQjmWAhSVRkeRvQdMoa4ut9BtA9B3ZMWM20dawqY4OZTWLzoi0tVHBnNH0WphAQ5Eb+Xm0LJZ/jyZ74ruWl4uTqSmU27/sHwBvM3NKbflsDkYS2F77W1hiua8/5fZA20rEz8ISFkoKbAJtagZvnT9L2QpB3Zhq68DNxJRIY+xplDc24ncaK6NfgqZRvrkLOFyMdnCkXFTpJjKhnIyizePB18KCKCHCVFsHFU1kFgFAW4Eq1bohTcKc0XRNz/gL7gXMcvfA54QKuwCQW1NDJKFuradPlIbsYGQED1NqxX7ZNdVwNDSiPDYABLu6EbUHgIlOzphAoIjwLPbMnofBBLpe6mLN4KEYZUc9UD+LqpZmYjtjS1091EvElP1v7A0NkFdbQ3l8a319yqrQFjq6xCu7lSePEckstRO8bzdKe5nFN8P/wwQailS3tNA6o5nm6oY1g6m7FdZLxERiiQV1dbChqGqbX1dLuUYHeKCkTGM/PbIgH8NUcE7Tzta7MUQ+PerAVt8AQS4u+PtujErGE3K5CF+xini15m5ClnFmINBCTBH1M6D82lrkUgxM2nwe4ktKKI8NADPdPSAjTAnncziY4Ojce3aVmG2zx2ACDUUqm+hlnZGe0dSJxdDicimfS+TV1FD2sJHIZJiydyfluTRKpciprSGWooksyMdgaxviAtcnEZKeCh0+H6PtHVQ0Ijkz3T3wT+xdIufJpzHIyhr3SkuJVYzvFhfjy+sRlNtHFxUSqQJ8dCWU8iolsayMyIyMx2Zjw+hxxPdTU21tvDU0kLCXhmDOaLqECTQUKaqvQ3gu+d58eWMjTAjSm4E2rxGqacUhGWlEBX8LvbzRn0DKY+aBvUTijQBQ2dyMqft2qexvRoG2xIT4UrKnZ1Xya1QktsREq2y8obZ2uJlP7rljra+PUgLvmmU+fpTP8Ey0tfH9pCmUxw7q54KxDo6U24u0tVFBMxGgksa5DkPPgQk0FKlsbqaV0ppdU4N99+KJ+qw5d4byzV3A4eIdAgVhN5EpBlhaUm4faGOLyc79KLdvR18gINoCfBbpVZWw0dfHEIoFqqpk0/iJ8DYzJ7Jafha38vNwLoNM4gcAvp80BVYEBmDTXN3Ao7g6tjcwJBo70NaOKP2dfiKAdu9QBQCTDPAkmEBDwLnFy4hTbWvFLTiTnkrUZ4mPL+UiPomsFa8MGEg5CymnphoOBAkBxkIhprqQJwQ4GBgRKVdTQZcvwGdjJ3SrhYCXmRlG2NkjlUZq+5PgcziIKymmrJDcDo/Nho2+AbJrqFX5A2SqANb6+iggSK231NVDMcHqKr2qEmsvUPdnaiemqBBfXAsj7qcRmK2zLmECDQHaPB6tc5o7r/wLQgIraAsdXXhR3O5QAChpqIeVHjU1gayaapgTPIWmVFTAg4Zk/+3CAgy0slZpDUxkQT5KGxuwwNNbZWM+DTaLhXUjRuPXqEgit9FnMcbBET9Onkrcr5+xCHm1NZTTiQUcLsSyVlS3UFsNcFlsohR+XT6fKBOMpHC5M0ZCIaQy5TTlGDQLE2gIKKqvp+W3UlBXB3tDQ8rts2qq4UTgnphaWYl+FLPDruflYs056rbUWdVVEPK4lH1v2qmXiHGnuJBoD58K/716Ce8MHYblvv5qXdnw2GxwWCyEZmXgSHKSSsee7+mF02nUa6XaKayvIzL/EstaMXL7Vsrtj6Uk4++7dyi3X3j0ENFKb6GXDy3R1ZcHDMQYBwfifpqA2TrrGibQEBBGs1CPtH7lfnk5dPnUBRv/ff4srmRnUWorVyiw0Mubsn+8AsDoHdtoZVu9c/4ckSkWFXJqajDv8AGMc3Si5Xr6LNgsFhZ7++LyspfA53CwIy6WqA7qWdjo68PbzBznKErCdMbB0JCo+PcFN3f4Edhxfz5uAmWhUHMdXSzx8aU8NgA4GhkRO4kCbWdHubXUt/Q0CrN11iVMoCHgr5ho3KHhd346LQWljdSzbe5XlGN1CPVVhx6fj3n9vSi39zIzJ1IIsNHXx0v+5O6G9RIxFnh6w93EhLjv08itrcHyE0exPuwy+BwO3g0cDn0B2YqrK6z19HBswSJM6eeCFSeOolEFopmPUtsixpshZ4i34oRcLnbPmksk97LY25fy1qWhlhaC+rlSFgr1tbAgFk91MjRGFsXzos7YGRggl/A8i6FnwQQaAgZYWuHdQHKRx4uZGcTCiW8OGkL53EWmUOCD4SMpjx1VWIBBVtSzt+rFEqweNJSWy6gen48Vvuqx4K1oagKbxYIWl4uLS1Zgtkd/WuPoCwRwNzFBRVMzNkffxtLjR5BFcOBOFQGHC18LC0TTeFgZamOLuJIStFDUReNzOHA3MUUcxZRwLzNzJBKsltwIrQoAYGPEVSKVgo5+4VeJkg40CrOi6RIm0BAgkbViBA0JEhdjEXbPmkvUp7+pGeWEgJqWFjRJpbCmGJiiiwop11YAQHVLM7KrqzGQRrry4eQkTHTup5IVR1e0tLbii2vhWHHyKGZ79Kf8O2hnlrsHLixZjtH2jhDLWlW+1deZ6W5uWOxNtt3UzngnZ1yluD0KtCUOJJWVUl45WerqIYbgYaifsYjofEabx0N+bS1xgaoWl4v7FeUq3b5UJ8wZTddQT4ViQG5NLewNDIn7FTfUE93YASClsgJuIhNcpHjjSygrgZeZOQopmFAV1dcTKQQAwLmMNHibmeN2YQFRv1pxC46nJMPLzJxWgSJVUioqsOTYEQBtdS8yhQKlDQ2obG7CvoR7mODo3KEJJ1co8Hv0bbw3bASGWtvipZPHcb+iXG1za2epjx++vnGNVt/tsXeJakmSy8uw+Nhhyu0PJycSzWfthRCiZIyBVtZY7uuPVaeOE11nkJU1VvoPwEsnyfppDGVXJX000DArGgLqJWJkVFdBwCGLzw0SCcSyVhgTSLmkVpRT3joDgA8uXaQclIC2QkyS4sdtsTHYGktP5+vziDC1BplH+frGNeTW1EChUKD9QVgBxYP/VkDx4K/5rzvRmHd4f7cEGXcTE2jzeLR+D3YGBmCxQDlNGWhT9SYppvx45GjK32s+h4OF3j5EqxMnQ3qJAHYGhsir6SWJAAxPhFnREDL/8AFa/Q4mJhDV0lzIzCDaxuGw2Jjm6k45bdZaTx++FhZEK5TXAgbhRn4uEsvKKPdp5+ORo3EtLxcRuTnEfUmpaWl5LE33cnYWLj+y9aQq3TIqpFRUYO4het+dFb4DUNrYQNnJksNi4c3BQyk7ZRoLhZjp3h9fXAun1L6fsQjz+nthD4HihZORMVIqyQO6vYEhcmpVf16mNpgVTZcwKxpCFnh605JB+SHyJqVtrc6sGTyU8lOmAgr8b8w4ymNHFRZgMOHn4LLZmO7qTtSnncSyUizz9aPVt7djLBTizUFDUCtuIe7LAjC5nwuRXI2HqSny62opWwmQJgK4i0yITQDPpqfSesi4kpOFiFwyKwVNwpzRdA0TaAix1tNDgJUVcb9gFze8PnAwUZ8JTs5wNqZWuFknFqNOLKZcH5NVUw0hlwdDLS3K8zmXkU6r4K69r7eZOeX59SUWeHrDnKYRnK+5BWpampFHUEfibmJKtFJ1MDDEPQLBUjdCqwKgTX6mgKLPTWfulZbQ2nLrjC6PmkAtg/pgAg0hObU1sKORENDSKoW/BXUxSwBIrayAu4h6DUpCWSlR0sGoHVtR00L9KTurugrpVZW0pEQkMhm+vXmdsqVwX4HLZmOxty9234uj1T+xvAyvnj5B1OdIchK+IFD03nUvDj9G3qTc/qfImzhAcVsOaKsBurp8FeX2nbn98utKyxhtHDteqf5EMOnNXcIEGkJyampopepmVVfDyYjM3TKtogL9RNSNxzaEXcal7EzK7R0MDfGCG9lW2MunTtBS4AXaboB5tTUw0iLzt+nNuIpMcLswn5YNOADM9uiPYkJnyfeHjwSLICPs3cDhRDfzyc4ulAs7gTZhTzoFl6baOqgTi5XWmaO7mqQDs3XWNUygIeRucRHeOHuauF9+XS3yCZRxgbYnzW8J0mGbpVJMdKIu6c9jc7B60BCiORlqaWHbC7No64wt8fHDpvETafXtbejxBbhfXoZ3L56n1d/fwhKr/AOIakjcRCaY6ORMuY+5ji7me3pRvpkbC4X4ZNQYojn1MxYhk470jKEh8mkUeD6KZTcGGoauYQINDVYPGkK8qmmVy4lrASQyGV4eMJCy3W+rXI7Px42nPLf7FeXgczhwIbBrrmlpgRaXi6B+rpT7dGZbbAyMhEKVWwj0NPgcDnbNmoMJTs60x3h94GD8E3uXqM80VzecJ9BRG+foiHCCQ/oh1jbEMky5tdWUM+A6U9vSgt2EXk6PwgJwIJH82rRhts66hAk0NBhma0fkUtnObPf+mNvfk6jPlH4u8KEojCiVy3EzPw9jCBSTz6SlEmtW/R59G6sHkSU2tNMql2N1yGnMcu+vNrWAnsD60WORU1OD0CzqW5mdEQmFcDE2xvGUZKJ+Ayyt/q+98w6L6tr+9zsDDL2KdKRZwAp2sTfsvXcTTUxuTM9Nv4m59yYmN/X+0qux94a9lygiKGKjKIJUkd77zPz+QPiiF5VzZoYBPO/znOeRcfbeayhnnb32Wp9FcGzDlaH9nVw4JsDGfm5tCE1JFmTTjexswWMA4nKy2Sewl1N9/CJAkVpjJEdTL5KjEUFUZoaoHi2lVZWCZfPPpSTTz829we8/Fh/PUE/vBr//69AQVl++JMimkOQkjsTfwryBSr8PklVSwtgNaygsL8fauOFZb82FTq0d6O7kzLvHDoueI7u0lKB1qwWfT8zbsZWbOQ0/D3rr6CFBhb5fhZ5le3TDnZ+JoSGhS5aJ0snbMmM2HQQkw9THpA5+vDdwsEZzSGjOE+loWpuZazQ+OiuzwWnHdYm4c4fuzsJSo88lJwnSGNsfd4P3jx9p8PtVajVPB3QX7Di/Dg3BUoMdiUqtZoR3W/6cPFWrzdH0jamhIdczM5iyeSOlDRTAfBB3K2s+HR7U4AZnNTzl313Q71cvF1cmdfBt8EO0jYkJ3Z1dBBW6dnVwJDY7S3AbbLlMRodW9oK7kD5IWzs70gTWr2mCTAtXS+SJdDT+Tg3v0VEfu2OiBTWgquFucRFRmZlYCkjxDU1J5tm9uxv8/rKqKgKcXQQ9CRrJDZjdWXjXyt8mTBFVvFrDkfg4bufl8sHgoaLnaErYmJiwf95CPG1sKFeKczIAz/XsJThxxFAu57mevcgobniGWnX4suE7ygFtPJgmUCG7u4urILHOGjytbUgvKtLo+wjgbWfHbR0ocT8UKXRWL0+koxHShKw+lGo1z3bvKag3SA1Lgnc2uGK7Zq3BHp60F5Dm3Km1g6CzoB3RUYxr10GwhtsvEeGCs9Ye5N1jRwhwchZ15tWUkMtk/Hf0OIJjYzR6Cnc0tyDIpx1rLkcKGjfU05sb2Q0vipQBw7y8OS4gHb6vmzshycLOWmKyMjlws+GqBnVZJ7L2qC6X09MbRcuuBim9uX6eTEcjsJ6lPib7+gmui4HqRAKhGVedHBwFZXkdjb/FcAHZTpklxRyJjxP8efbdiMXd2pqujsKUqetSWlXFlM0biMrMEH3m0xSY4tsRtVrNf8+f02ieVmZmfB16VrAOm6uVJeuvNjxDy9XKioS8XEGySP3c3Dkn8FD/bFKioK6gNcTn5bJGC47m54vhpAusQ5LQPk+ko/nsjDip9rpEZ2WKSggoLC9nTDthqcGhAhMCamoWhMi9vHPsiOAnP6VazZLgXcQIlCN5kAqlEi8bW/bNXShIEqepYCSXszMmir/t36NR3xRzIyNu5eSw4eoVwWP/jLwkKK05paCAOdu3CFpj4c7tguRgPKxtCJ4zX9AaNXw7Zrzg88z61l89eZpGcwhGCp3VS7NxNB9//DGBgYGYmZlhY2Oj0VxCxSTrIyozU1S4JzorEy8bW0FKzhF30uhgby/o0Hzc+jWC4/y/TZiMm5WVoDHxuTkM9vDC21Z4ckRdEvJy2RUbzX9HjxNdDKoPPG1sODBvEQoDA0HV8vXxbI9evNK3n+Bxz3TvKbih2j+HDhek0NCxtYPgdPQezi5cF6H0DdDTxYVkAfpu9dHWzk7jn4koJCfzPzQbR1NRUcGMGTN4/vnnNZ7rtX6BOGlYLbz+6mU+DzkjeFyVSsWx+Fs4Wzb8hl6hVNLv918EpboaGRiwNKCHINvicnKY3rGzoDEAblZWLNfwrAbg/50/h1KtYnIHP43nagw8bWz4Y+IUfrwQ1uAWyw/DQqFgbpeuojTR5nTuIqhVuLOFJaN82pInoL/Nwq7+dGtgPVcN3V1cRCUC2JqYYig3ILOkWPDYuvjY2olSJJDQPs3G0Xz00Ue8+uqrdOkiPDvqQRJyc/HR8Am8vKqKmZ2E35QBXjt8QLAirYe1jSB5mZLKSp7v1UdQKGpL1DWm+3USvKPYdO0KA9p4aKzMrFKreX7vHoJvxNDV0bHJa6J9NGQ434aFsj36usZzzevSjWMJ8YJTcXu5uFJcWSko7DnMy5sTCQmCHqD7ijifuZyeztlk4RL/5gojNgo4b3oYuWVlhAvsCKspUjJA/TQbR6NNEvI0dzRqqvvFiKnJaWtnx1v9BwoaY2VszLM9ejb4/VUqFWeSEgUViMbn5rAzJkpwiKS0qoo/L0cwoI2HoHH1Ua6sokqloqeLKztmzREkj9NYTPH1w9bElKd272BnTLRW5txzI4ZvBCgo1yADvg0LFTTG2cKCQ7cafp7jYmmJkYEBiQJ0x+QyGVujrglqb1BDSkEBX4n4XjzI1qhrguR1tIJ0RlMvLdrRlJeXU1BQcN8FsPZKJPsFNJJ6GNcyMkTV5GSVlDCrUxdB6dGR6XfwtrUT1A768K2b9HFteBIBwJfnziITUTb2Q3gYG69dwUxLmWN/XIrg87Nn2DBtBkE+Dd/J6RJHcwt+GT+JpwN6YGpkqNHBf12WBPSgSqUSnB1lbWzC5bt3BVX2A3xx7iwnbic0+P13CguZvmWjoDWGeHrxw9gJgsbU8NGQYfQVkPxSHzJg8/RZDdYJlNAtev0prFixAplM9sjrwgXxOkUrV67E2tq69nJ3r/7lzSgupq0WnpRDkpME64RBtTDlrdwcQRX/lSoVR+LjGNTGs8FjDsTd5B0RMiirJk8V9bnszcw4NH+RxudfNeyPu8GEjeuIuJOGh7UNnR30V2sjl8lYPXkaF++kMWXzBq1Vm0/168iMjp0pElBbVcM7Awax2D9A0JiFXf2Z4ivsDGxWpy7kCjjPARju5S1K30wGjG3XnjgBMjr10a5VK6yNTagUqK6gKVLorH706miWL19OdHT0I6/OncWdgwC888475Ofn117J94rN1MBP4yYKqtCvj61R10QlBAAEx8bgYmEpaMw/jh9lV2zDQzUqtZrerm4s7ibsZvR9WChvCgztQfVO7feIi/w4bqLWZGXSi4rIKinBxdKSXydM5u3+gzARkLGnKd42tqwYXN0ie+Kmdfx8MVywNMzD6NTagbf6D+S5fbsFZ0f52NoxxNNLUFGjDHgqoLugdHQPaxte7NNPUCKKDBju5SOoN1INvvatySopEd3zqIYezi6CEiS0hhQ6qxe9Ohp7e3t8fX0feZloUFdhbGyMlZXVfRdU34Cv3E3HX2DHywcpqqhgYBsPQeGsGtZeiWSHQGXeSpWKZT16CVI2SCnI52+9+gi6OR+Jv0WVUiWqbfOfly9xOy+PhV39BY99FOdSkhm9bg12ZqYcmr+IpQE9dNoW2tPGhg8HD2XT9FnEZGWiVqs1bsD1IHKZjL8fOSRKSeDVvoH8eCGMYgEOariXDxnFxYISByb7+hEcGy0oTGhiaMjvly6K2vWZKxRs1oqsv4xTiQ0PD0rolsZ7NNSQpKQkcnJySEpKQqlUEhkZCUDbtm2xEBGqiUi/Q4CzC38lCc+KqcuYdu0xNTQStNOo4ZNhI/kj8iJxOQ3PQLM0NmaqX0e+PHe2Qe9PLSzkfGoKU3w7svFawwsBXzm0j2yRT5VvHz2MUq1CYWCg1ZtzfnkZbx45hJ99a2Z26sym6bPILyvlmT27SS8qFCzcWBeFgQGB7m0Y7dOO78JDMTNSkF5UxLgNazVOs30QuUzGkoAerL58SfT3Z+WZU2QK/PkYGcgFJw4M9/Lh70eENW4zkMv5VaQ0/4W0VMH9bupDyO+6NtE0/CWFzvTMBx98QEBAAB9++CFFRUUEBAQQEBAg+gxn87Wr7BQgd/4wziYlEdhG+HkGQHFlBSMEpCwD7IyOYrKvn6Dj+t8iLmBvZiZonZSCAjq0shd1EF+urEKtVrN79jzBtRcNITork49OnaD/H7/w9rHD3C0uYopfR04uWsK7AwbT3dmlQd8fcyMjjA0M8Xd0InTJMpYE9OBa5l0KysuJyszg54vhWncyAK/1609fN3cqRTqZV/oGUlhRIchJWSoUHIy7yRmBD1bTt24kNluY8sOW6bPwtRcu728kl7N3zgJRGoJ1sTEx4efxkzSaQzRNOHSWm5vLggULas+sFyxYQN5jdtM7duxg1KhR2NvbI5PJah/whdJsHM2ff/6JWq3+n2vIkCGi5rtTVEhrc3ONZblDkhNFHZzDPU0yr4b3joFqeZnY7CxcBBR8Xr6bzrdhoYIzcMqUVXw4eJioMxGlWs2nZ07z3djxtBIRWmwoV+7epUqlYlvUdZYE7yS/vIz3Bw7GQqFgesdOhC5ZVnu1tbOjl4tr7ddnn36WAGdnorIyGbr6Dxbs3Ma6K5cpKBemMyaEUT5tGduuPa8e2i/qnjLIw5Mgbx8KBdr4z6HDBRfjLuoWgKdAFQ5XSytsTU1FyRJ1c3KmrKpK4zOwACdnjZ2VaJqwo5k7dy6RkZEcPHiQgwcPEhkZyYIFCx45pri4mP79+/Ppp59qtHazCZ3pgpXDR7J8/15BjaIeJLWwkIkb14kaeyEtlaySEgxkMkFhn6XBuwSv1dPFlZf79GPBzm0NHhOTlcX5lGQWdQvg54vhgtc8lXibzdeu8t7AIbx2+IDg8UK5lZvD9+Hn+T78PFCdcHG0TvfIwvJybsvyGL1+NVBd1FqzK9D2+cvDMDE05G/7gkU5MxnwZuBA/hNyRtD9yMnCggFtPHlPQGsLhYEBy3v3Zb9A5eUR3j4cS4gXNKaG/u5tRBV4Pkh3Zxcu6SMRoAkTHR3NwYMHCQ0NpU+fahWPX3/9lX79+hEbG0uHDh3qHVfjiG7fvq3R+s1mR6MLLoloRFYfjuYW9BKQqlyDUq3m+X3Bgs8WDO6l2grJ7Lp0L0VYqBDoV6FnNepy+H34eVacOi6qw6KmVCiV5JWV1V5KtZoqlar268ZyLlAtMTOjY2d2x8aIFiF1tLDgemYGJwXUwAAs7BbA1qhrgjLbhnh6EZWZITh0eD0zg/VXxFX1F1aUc0xEptqDyIDQRlYEqF27iaY3nzt3Dmtr61onA9C3b1+sra0JCdG8OPZxPNGO5uKdNK04Gk8bG54WqCtWg7+jE5+NGCVoTM0NU0jYTalWsyoygiUC7UwpKOC1wwcE96qpQQ0UlJfz39HjGCdQtbol8fnI0XQQcW5Rg6FcTk5pKW8dPSR47N4bsfxx6aKgMR1a2QuW1jE2MCQuJ1t0/5c/LkVw5a7wlgIP8sW5s1pJKBCFlkJnDxaal2sYzk1PT8ehnjo0BwcH0tPTNZq7ITzRjuZ4wi1WX76k8TznUpLp7eomSnU4LjeHUT5tBd/Id8ZEMcVXWLfDrVHXOHFbeFhDYWDAkQWLcRVwLvQg/z1/jg8HDxPUwK2l8FzP3tiYmPDpmdOi55jftRv/HDJc8Lgezi5klRQLrkv5NiyU4NgYQWNGeHuzcniQoDE1DPbwFPX5HqR9q1a8P2iIxvPoG3d39/uKzVeuXFnv+4QUvcvquT+p1ep6X9c2T7SjyS4tpVKpFCTZXx95ZWWkFhTQsbXw/jRFFRVcvptOoLswyY2j8bfILy8TvNaR+Ft0cRDWqKxCqWTN5Uv8a5j4G8HNnGw+OHmM78ZM0EsYTZ+YGBry4oG9og+5nS0seaFXH368ECZonFwm44ug0TiaC0v/n+rbkVmdhIvXjvD2ue9MTAgD2ngIbmtRH71c3DDWUrGwGGRqtcYXQHJy8n3F5u+880696zW06N3JyYm79ewWMzMzcdSgcWFDeaIdDcC7AwfTR0NdJYAFO7dxTWTvjc3XrgrOkimrquLvRw4Jvmm3NjPjj0lTBDvXVZER2JuaC1KQfpCDcTeZtW0zKrVa4/41TR0Z8Ldevenu7MI3oSEaVbq/NWAgv1+KECRqCdU3/rtFRYI7XM7u0pXUwoa1hK7BUC5nkIeXqB0z1CQCJIkaW5fuzs5cunNH43lEo6XQ2YOF5sYPEbptaNF7v379yM/PJyzs/x5Wzp8/T35+PoGBgbr4TtzHE+9oziUnMVBLqsNCpV5q2B93gyPxtwQ7DTcrK/bOXSAoZJdaWMixhHie79lb0FpKtZrlB/ZwJum2oHEPkltWipeNLRumzuDpgO4azdVUsTEx4dcJkxnUxpPEvFyN5/v6XAi/iSiAXNjNn+/uZeA1lK6OjjiYmRMi8KYvl8l499hhckqFaaJBdf3MpfQ7RGeKe1Cri4mhIaGpwjXWWjp+fn6MHj2aZ555htDQUEJDQ3nmmWcYP378fRlnvr6+7Ny5s/brnJwcIiMjiYqqrjmMjY0lMjJS8LnOE+9ojsTf0ugpvYbyqiqWdu8pSB6mLu8PGiK4v01KQQFZJSVMbO8raNwXIWeY1rGzYK23pPx8DORy1kyeJriVQF3i83KZvHk9o33a8dO4ic2qo2ZDWDFkGFGZGczbsZVsETfeGgZ5ePLxsBEk5ueJCrst2b1LcIFmazNzPg/5S7AydYCTM0dEhs1UajXvHT+qlRKSF/bv1ZrgqRiaatYZwPr16+nSpQtBQUEEBQXRtWtX1q5de997YmNjya/T2iE4OJiAgADGjRsHwOzZswkICOCnn34StPYT72gS8nJ58+ghjQs31UDwjRgmCVTGreFg3E0WitgRfRMawot9+graDWWVlDBy7SoKRSgGF1VUcCXjLt+OGa/RWUt6URFztm9hw7UrqNRqHMyF9/VpSsiAxf4BOJpb8Mbhg3wVGqKRJI6XjS2fjxzF5uvCdb/szcxYO2U6lSph6dvWxiYcT4hnn8DamfatWvFF0GhBY+qyb+5CjRJNaljWoxcjvHw0nkcjmnDBpp2dHevWravNZFu3bh02DxTkqtVqFi9eXPv14sWL6y2UX7FihaC1n3hHAxCTlUnH1ppL0O+OiWawh6eosRfSUqvVlgXW41y8k8YXIWcE7wpKKit5I3AAg0TY+9W5s1SqlLzcR3h/+7oo1WpOJ97GytiYXbPmNdtQWk2obLRPO1T3Us81wVAu56fxE/nszF+i0n3f6j+Qi3fSBO9Kvh49hrEiUtAXdPVn3ZXLovrz1EgUCT0Tqo/pHTuRUqh5QoGE9pEcDeBpYys6LbMusdlZzNi6SfT4f546ISrUciDuJoM9vATvMM4lJ/HBoKGCpWlUajWvHtzP1ijNWxhDdZ3N1C0bGO3Tjl/GT9I4C7Cx+WXCZKKzMpm3Y6tWtNGqVCqW798rWN0bqkNYfd3c+Ulghpq/kzNeNrYcjGt4500AU0NDxrRtz5br1wSNq2FSBz9RgrQP4mVji7GBoehiWG3RlENn+kRyNMDl9Ds4mJvjYimsP0x9tG9lLzop4HxqCiWVldiaCNcGm9+1m+Cw3dnkJG7kZPGUv/CdRGFFBckF+XwVNIauWkiPrAmlHYm/xct9AnlnwCDBQqCNSXdnFz4bMQpDuZyndm3ny3NnNQqV1fBa30Cm+PqJlkUqKC/njcMHKauqEjTu5T79+DYsVPBnKK2qYuyGNYIbo9VwLeMuu7XQDtvB3FxQbx6d0YRDZ/pEcjRU/2yPJdzSSnw3t7SUv/XqI1rU7+mA7oK7JgJ8c/4cy3sLO6sB+Pj0KZI0qF/YHRvND2MnasUpKNVqtkZd47dLF1Cr4eC8RbzYu6/G82qTDq3sWTd1Op+PHMX51GTUarWgnjCPYly79ozv4CtaK6yPqxv55WWcFyG/8p+zfwm+4cuAl/r0E5VpBtUhx92x0dwp0vzw/nxqCr+IbE2gTaQdTf1IjuYe34aFEnxDWCV0fdwpKuRWbg4DRKZMr7tymVmduggOZ0Wm3+F2Xq5gJenUwgIO34pjbFtx8jCnEm+z9kok34vsD18fWSUlfHr2NCPWruJschIyqht96bLR2eMY5OGJm5UVFUolm65dZeTaP9kRHaWVXQxAG2trPhw8jGV7dosS3HQ0t+DbMeOxEdEocGFXfxLz8wR/loFtPBjs4Sn6TOqDQUMFK0rXh72ZGZumzdR4HgndITmae6QXFeHv5Kxxe2eolnppK7IgMTE/j+uZGYwWceN/bm+wqEZucpmMZT17MVWgpE0NP18MZ8XJ46LGPoq8sjIi7qRhdK+B2vaZc/hi5GjcrDTPUGoIMmCktw+7Zs/jjX4DsDUxJSEvl703YkUdfD9qneT8fOZs3yI6ZPbpiCB+vySsiR5US9Qs8g+gXGCoDarFOtdejhQ8DqrPdoZ4egk+E6qP4V4+pBRonkygFaTQWb00r1NXHTOjYyesjI0Fazw9yA4NG6q9f/yoqJh3hVLJrE5dqFBWsVNAGKRKpeL1wwfYMHUm51KSRYUyorMymdmpM90cnXhfSzURNVQolXwffp5VkRHM69INK2MTPG3kPO3fg7C0FMJTU7lbXKTxOnKZjA6t7Ont6kZ6USHHE+KZ4tuRb0JDBCsmNxQnCwt+nTCZZ/bs4lauMCdRg6ulFeVVVaK6Wr7SN5Bvzws/mzEzMsLRwoL9ccJSoWsY6dOWsNQUwTJK9c7l7cPWKHHJCLqgpYa/NEHa0dThyC3tFG8CPOXfXXQ46k5RIX3d3GlnJ1yAMjorg1f6Bgo+I4rLyeHHC2H0E6i5Vpfg2Bjcraz5fORoneiZlVRW8mvEBaIyMygsLycuJ5tRPu3YPXseA9p40MrUlNmdujRY3kZhYEAvF1e6OjoiA04/tZQvgkbjbWtLXlkZlSoVf9u/R2dOxtXSio3TZrL1+jXSi8Q5SjtTU+4WF/HcvmDBuyx7MzOM5HJRIeOSykombFwnutXClbvp/Pf8OVFjHyS1sEDjluwSukXa0dTh+O14PhxSne5bqWEtRGphAXM6dxX9xOdta8votu14++hhQeOu3L3Lzexspvl1ElzstyoyAqjO4MkoFp6mW1ZVxdI9u/h+7AQmdfATlZ7bULJLS1lzJZI19zKNZICrlRX+Ts4s7d6T1ubmvHxwHzezs9k1e17tuO/CQll9+RKhS5ZhamREbFYma69c5srdu4xYs0pwtpYmvDdoMD9eCBOdGiwDfhw3kfVXL4vahWeVlDB7+xbB44wNDPlt4mSe2r1D1PmMlbExRnID0e0EHuRDHYRtRaNWV1+ajG+BSI6mDgXl5Yxet0ZjJwNw8nYCnwwbKfqmvS3qOicWLeELszOCBRm/Dg0RXYBqY2LC3jkLmLtji+B4P1SHuZ7fF0yVSkV3ZxduZGdRJEKBQChqqiV53j5W7ZhNDQ2pVKlQqlQMW/177fvK7z2Bj1xb7VTq/qwby8l0dnAgo7iYF/fv1SiZ4NkevahQKtkjwsn0c3NnTueuvHRwn+CxU/38KCwvF50EMNWvI772rQU/RNXHp8ODOJYQz5H4OI3n0gaaZo611LCbFDp7gCqVUvSheF0qlEp+uHAeFwtxtTkF5eVsvHpZVMr19cwMtkZdE9xNE6oP4D86dZxfJ0zGzlR4PQ9QewMa6unFjplzReu/aULpvd7zaqprfmqumlBPYUWFVh4ohDLVtyO/T5yCp7WNRk7G2cKS2Z278NqhA4LPwxQGBvx72Ai2CWxsBtVnMy/2rq65EYOBTMZT/t1FJxHUxdTQkJE+bfXX5EyiwUiO5gEqlEreHzQES4V40cga/rgUwdWMu4JaLtfly3Nn2SRC6wrAUqHgj0lTRO1s9t28wY7oKOZ39Re1dg1fnjvLjxfOs2n6TPydnDWaqyXwYu++LOvZi1nbNhOmwc3R2tiEO0WFjFq3WpQSwUu9+3I5PZ3TibcFj7VUGPPLxXDRYa+RPm1JzKvOrNSUMe3acz4lWXSxqE6Qss7qRXI0D1BYUcGpxNuMb9/h8W9uAG/2Hyiq8h6qf+cCnJz5efwkwWMLKyr4+K9TfDo8SNTB/LdhoXx7/hyuGqol7IyJ5qndO7mVk00rkTuk5o6tiSkKAwMO34pj6uYN3M7LEz2XvZkZe+fOp0Mre9EH8Qdv3eRfp0+KWhvgTw260h65Fcdrhw+IHl+XzOJiUZl2ukSm0vxqiUiOph62RV1jmJe3VubafO0qi/0DRO9qrtxNx8PahkEiCkD33oglo6SIgSKFPtXAJ8ODeE5g75oHicrMoLCigjf7D+L3iVP0WnjZ2Izw8qnNiovNztJIRcDYwJBfJ0xm7eVIYrOFa3oZyuW82LsvN7KzRe0C3uo/UHAri7r0dnFluLePRk3garBUKAhLTeVSuh6bnEk0GMnR1ENIchLL9u7WylzxeblcSr/DND9x5z5KtZpPzpzi3YFDRO1M/ravOj1XrKN7/fAB5nTuwigfzdO+3zt+hLPJieyYNYdpfp00nq+p88PYCbzaL5A3Dh/guEhZmbpM9fMjNjtLtNTKq30D6djaQdROqFNrBwLdPUQ1YKvhlb6BWkt7X9q9Jy/27qOVubSKFDqrF8nR1IOaavnyhRqeUdTw+dkznE8Rrj9Vw+nE23wbFopMxB9phVKJu5U1e+cswEKE6kFWSQnP7NnFgm7+gsc+SJVKxR+XIhizfg3haSnYm5kxrp12QpRNBQuFgjmduwLwffh5Jmxcp9F5TA3eNrZsvHaV944dETV+QBsPJrT35a2jh0SNf65nb748d4ZSkZl5/o5OOFlYcOiW5tlhMmCaXyd2aEGMU9tIWmf1Izmah5BVUsLfevXRyhNYQl4uFSqlRirH+27GMtTTW5SzSC7I50xSIv8aOkLU2jeys5m/Yxs2Jib0cXUTNUddskpKSMrPx0phzNLuPdg4bSa+9vYaz6tPZFRnlB2evxi/1q0xksu5npmhsVSNDPjnkOF8NHQ4gOhMNUuFglcP7Relowbw5pGD7NRA8aKroxM/XgjXinRPoHsb7hYXES9SSUGn1NTRaHK1QCRH8xCSC/KJz80R1RisPrxtbEXf6GsY4unJcz16iRr76dnTtLWz00j5wNnCkv83ZhwjvbXTxTA+L5epmzewPfo6X4wcI1hItCnR3dmFWZ27sCR4Jx+cOKaV1Gm5TMbKEUH42NmJDuXKgLFt23Mw7iYX76QJHm8ol/PjuIkYyOUaRXXWXInUmkxMXE6OTrT1JHRH8/3LbgQ2XLuCp5ZqQE4nJWIgkwtWV67L16EhzOrcVVTfnAqlkqd27+DEbfFnBdFZmSzatZ1/Dh3OOBGdGOtDTXVx6viNa6lUqfh94hSW9+qDs8j6o8akp4srXwWNYVmPXly8k8asbZu1Vu0O1TUrheXlPL17JyUikwie6d6T+V27iQq7Aszr0g25TKZR0e3Hw0Zo7eHEQqHA0cKcqxnCO482BlLorH4kR/MI9t6IrZVl0QY/XQxjhgay6FklJayKvEiQyIP5rJIS7ExNWTN5mujkgJisLObt2KaVzKH6+Pj0SWxMTdk9ex4v9Ko+7NWFbppYajTkds2ex4eDh3LlbjprtdxwS2FgwPuDhmAkN+Djv05RrhR3LtLN0YmnA3rwyqH9okJWVsbG/K1Xbz49c1rU+lDdviDIpx2hKcmi56jLhPa+ossFGgUpGaBeJAmaxzC/azeguk+Mpuy/eYNDGsqi/xBe3aJXhrjfyYziYrJKSnhnwCA+OnVClA3xuTnE5+bwUp9+ZJeUsP6q5t+b2rnzcvn36ZN8duY0VsbGmBkZcXzh0xxLuMW2qOt6SWc1NjBkVNu2zOjYmaKKCp7fF8yze3aJkhZqyFo/jp9Aflk5BRoqG/d1c+edY4dF22mpUPBNaAgJebmibVgS0IOtUdco1JIM0YyOnfji3FmtzCXReEg7mscQnZlZm0WkKSq1GndrG97uP0ijefzsW7NmynTR4/9x4iiDPb0YrmGt0LaoaywJ6M7TAdp/wqxUqcguLaWkspJxG9ZwKzeHT4aPZKpvR0wMDfF3csbUUHfPSa3NzPF3dALgy6DRjG/XgTWXI3npwF4AnTgZgK9HjyGjqJjXDx/QSKLG196eny+Gc0Kk8rSThQUVShUbr4lTpqjhWuZdVl3STlTA29aO1ubmnEtO0sp8ukAKndWPtKN5DBfvpGFsUH1ji9TC03RqQQGTfH3ZEXOdG9nimlzFZGVioVAwuYMfu2KFp3gWV1by7J5dolvw1pBWWMisbVtYN3U6V+7e1ZnmVHZpKX9ciuCPSxHIZTLcrKx4b+Bg2reyJ7u0hH+eOsHZpERGtW3HjewsEnJzG3wYb2VsTPtW9pgbGXEq8TZv9x/EtI6dqFIpCU1JIfLQfl48sFfnEQ17MzPyysr49MxpkvPzNVpvcbcAJvv6MWXzBtHzfDJ8JGeSEvlDAyfR1dGRfTditdaFNCE3h1nbNjft6JKk3lwvkqNpAP8J+QszIyOtzFWurOK/oed4f+AQFu7aLmoONfDmkUOsnzqD0NRkUb1M4nJyUBgY8NO4ibx/4qjoM5fMkmImb1pPaVUVg9p4EJWVqbPzG6jeFSbl5zNj6yZkgJuVNYUV5ZgrFAz38ub5nr3xsLYhq6SEcmUVW65f4/dLF9k8fVZtm+NzycmsOHWc3yZOpruTCzdzsglJTuJU4m3WX73MTxfDyCv7v7CVrv/0+7i68WXQGN48eogQDZ/WR3q3ZWn3nkzbslG03bM7dcHa2ITVkZdE2+FiacnvE6cyZv1qrfw+2JuZMb5dB43kbyT0h+RoGsDhW3EYyeXYm5lp5Y9mS9Q1vG3tMDE0FC1NfzMnm+f3BZOtgT0VSiWRd9P5bcJk5mzfIroYr2ZcJwdHPg8azcd/ndK4S2lDUFOdhl7Dq4eqNbQMZDIcLSwwkhvU1o28fvgABrLqSHFNBtfLB/b9jyRM3fkag/cGDmaUTzutOBmA0W3bsiR4p+iOo3KZjLlduvHiAc1aGLzdfxCrIi9q7aHjme49m8XDvtQmoH6kM5oGMrGDH//WsA6mBtU9WRkHc3ONzhku3knDr3VrjbTIfroQxpW7d/lm9DjRc9Tw44UwFu3aztKAnszu1EXj+cSiVKtJKywkMT+vVtMrpaCAxPw8EvPzahWPNdEd05SaAtW/khIZs361xk6mq6MjXja2vH74oCgdNKiW3TeUy5myeT2J+XmibfGyscXXvjW/RVwUPUdd7ExNmebXid8uNS0BzXqRss7qRXI0DSQ4NprODo6ierw8jGd79OKlPv00miMxL5/ZnbpoVKfw4cljfPLXKeQyGeYahghjsrKYsnk9O2Ki6OXiylSRGm8tFUuFgpXDR/LjuInYmJhwOvG2xg6vl4srv02YgpOFhUbzrBwRxNMBPTQ+U0nIy2X8xrWi1aUfpJujE5uuXdFpSFZCt0iOpoFUqlT8eCGM5VoU8vsi5AxTfDvSoZV4+ZX88jL+tn8PHw8bKbrBmBpIzM8jyKctG6fNwtZEMzl/pVpNhVJJTmkpC7r688ckzW+CLYFWpqYcmLeIkspKxq5fc985kFj6urnz3djxvLB/D+c0qFVZ7B9AGytr/rik2S7kpT79mNmps9acjAw4cTuh2aQ0S1ln9SM5GgFsjbrGf86e0dp8eWVlfB5yRisy/G8cOUi+hnUXB+NuciQ+jo3TZtb2HtGEW7k5TN+ykdDkZN4fOETj+ZorVsbGDPH0Iru0lMW7t/Ov0ydFn4c9SEZREc/u2U24Bhl/tiamPOXfnb/t36ORg/CysWV+l25aUaqu4dW+gbW1bM0ClVrzqwUiORoBVCiVFFaUa/UXf3v0ddGKunU5nXgbA5mcV/oGajTPt2GhbI++znARLaTrQ6lW80vEBZYf2Iu9mRl/TJrCYC3pxzV1zI2MWBrQg0PzF9HD2QWozvbTBmPbtuc/I0cRn5fL5bvpoucxNTQkt6yUoLWrRWUv1uWfQ4fzzfkQrYW4rIyNmdOlG0fjb2llvkZBOqOpF8nRCKS4opK/9exDO7tWWptTrVazZcZsjUNW+eVlDGrjwWL/AI3m+TXiApuvX2VM23ZabVKWXVLC5mtXebVff/bNXUBbOzutzd2UqEmjntulG772rVm4cztfajH0M8XXj3cHDeaXi+EazWMol7N68jSGenqJlrmpy/qrl9l49YrG89SwJKAHB+JuaOwAJfSP5GgEUq6s4ueL4bys4SF+XSpVKsJSU3h7gGaKARVKJX/bv4dlPXrRy8VVY7vMjBRsnDYTby0Ji6qBQ7fimLxpPf8+fZK7RUX0cXVjXpduGBs0/0x7V0tLPhw8lKMLnsLTxoZfIy7wxpGD3MwRV5hb/xpWvNSnH/O2b9V4d/TugMFklZSIVg+owVJhzPSOnTgYd1OrD+SR6Xf4Ify8FmfUPTI0PKPR9wfQEZKjEcHGa1doZWamtSJOgO/CQunr5kZvDR1EelERL9VTHyKG7dHX+fTsadZNnYGHtY3G89XlXEoyhRUV5JSW0s/NnVOLl/B8z97N9g/Ny8aWXbPnkVdWxsi1f3I7L0/ra3R1dCS1sIBR61ZrlH4M1ZlcAz08+PuRgxrb9ffAARoltNRHTxdXzqWIK0bWK1I/mnpp/o+ReqBCqWTO9i1avSmWVVXx8sH9ZJVorqEVnpaKwsCAF3v35ccLYVRp0Btl741YMoqKuFNUiKmhodYOsWu4mZPN8gN78bKxZaS3D2pgcgc/CirKOZuUpJWQji5wMDdnuJc3o3zaEZqawk8Xwhi46jfRBbiPQi6T8WrfQEb5tGPSpnUa/wyM5HIu301n6uYNGj+QdHN0Ypi3N6PW/qnRPHWxNTHlx3ETGbdhjU6+nxKNj7Sj0YC1U6drta4mMv0OlUoVo0S2AahLhVKJn31r3h0wWOO5wtJSqVAq2ThtJstENl57HAl5ufxSpx/9om4BnF+6jA8HDwUQ3dZAm/jZt6aLgyMGMhkbp83E38mF9Vev8Ps9u3VxUzQxNOSPiVPo4uDIzG2bNHYylgoFe+cuwN3KWiuKyr1d3fj36ZNaLX59pkdPdsdG60y4VJdI6c31I+1oNCA4NoZ/DBrC3B1btTanTFadvZOYn0dMlrgK7xr+fuQg22fOZXG3AK1oRD2zZzffjhlHPzd33jhyUGcFdLtio9kVG42FQlGbjPDnpKmYKRScvJ3A6cTbRKbf0Upb4EehMDCgQqnkn0OHM8LLh8KKcn6NuMDVjLsMX7NKp2sDtZJHW6OucyDuhsaf18TQkB/HT+R4QrxWpHacLSz5NUK71fpmRkZMaN+BKZs3aHXeRkPTzLEW6mikHY0GbL1+DYWBIVN9tVf9nl5UxIqTx/l2zHiNZfCLKytZtGs76SJ1rx4ks6SYuTu2ciYpERkynR/gF1VU1HasnL9zGytOHkdG9SG2gUzGVN+ObJg6g0+GjeTZ7j2xMjbG2MBQkF02Jib4OznXJjx8FTSG3bPncfm5F2prf/5KTGTG1k2MWreabVHXtf0x/weFgQHvDRzM+qkzMJDJ2HczVitOdXmvPiTl5fOfs39pPFcfVzc2T5+l9Z1mSWUlQWv/lFQAWhjSjkYD1MCbRw5qTQa9hgNxN/G1b427tbXoVgI13C0u4mDcTab5dcLJwoLvNcziUanV/HavevyroDGUK6v41+mTolsNC1k3Mv0Okel3+Do0BICjCbdIKcjH09YWD2sb1Gro36YN/x09jpLKCipVKpbv20OZsorfJk6pnevzs39x+FYc55Yso1KlJCEvj/VXIonPy2XvzVjSi4pIzMutDQcdiY/T6Weri6ulJb9NnEJ0ZibTt2zUyu+WpUKBnakZ/y8sVCsV+7YmpnwZNIbXDx/QmgIAwLh27fFr7cAXIdorim5sZGo1Mg1+ZpqMbcrI1Oqm/8lu377Nv/71L44fP056ejouLi7Mnz+f9957D4VC0eB5CgoKsLa2ps2n/0Z+r9ZBG9iZmjK6bTs2aLGGAKqfbHs4u2gkLVKDrYkpa6dM58TteK3VdJgaGvLuwMH0d2/DSwf3cS0jQyvzagNbE1MM5DLyy8pQ83+1LVC9UyqvqsLMyEivwpp1kQGOFhbklZUxsI2n1pybtbEJq6dM4/Ctm7XdWTXljcABVCqV/Pf8Oa3MB9XO8OD8xSzbu0vrv0eqsjKS3n6f/Px8rKystDp3DTX3loGDPsTQUPy9paqqjL9Of6RTW/VBs9jRxMTEoFKp+Pnnn2nbti3Xrl3jmWeeobi4mC+++ELf5lFaWclzPXpzMztbIymQB7Ez/b8nR02dTW5ZKXN3bGHN5GnEZGWy7+YNje0rrariHyeOMdzLG0O5AeZGRlSp1E0iU6xGtbmG+kIxTcXJuFtZ8/GwEWSWFPP64YNaczJ2ptUPF0fib2nNydiZmvJNaAhKDTIZ6+ONwAEcirvZpB5WJLRHszijGT16NKtWrSIoKAhvb28mTpzIG2+8wY4dO/RtGlB9w11x6jj/HjYCI7n2vqXpRUUsP7CXb0aPxdPGRuP5CsrLmbtjKwfibuJhbaO19OxjCfFEpt9hhLcPxxY9xcxOnTGQNdeKmMZlesdO7Jg1h5OJCfz9iOZSRHWxVBizNeoa39wLNWrKgq7+/Hf0OKpUKq2fWZ9OvM1Xoc1DOPNR1ITONLlaIs3C0dRHfn4+do+RMCkvL6egoOC+S1ccT4gnJDkJdy0XNkbcSePTM6fp1NpRK/OVVFaiUqt5Z8AgVg4PQq5Fh7A7NoZn9+xmbNv2bJo+S2vztjTMjYx4uU8/XC2t+CsxkeFrVvHHpQitZdE5W1jy8bARJOXn8acGXTLrMqCNB8/17M2bWnaGBjIZc7t05cTtBIq0kG6tdySts3pplo7m1q1bfPvttzz33HOPfN/KlSuxtrauvdzd3XVq10enTpBSkI+dqWaaZQ+yMyaafTdjGento7WdwssH9+NoYcEXI0drdfcRlZnB4t07ePHAXgA+GjJMK3I4LQFDuZyFXf05tvBpnC0sKVdWcbe4qLYLqDZws7Ji0/SZRGVmau2eJQNe6RPIC/uCuVNUqKVZq1ns351hXt46T1VvNCRlgHrRq6NZsWIFMpnskdeFC/fn6aelpTF69GhmzJjB0qVLHzn/O++8Q35+fu2VnKz5ofrjmNjBl6+Cxmh9Xhkwo2Nn3tOS3H65sople3eTW1aKpbGxVuasS410SGhKMp+NCOK3CZPxtm2ZIpqPQwY4WVggl8nwa92aeTu28vaxw1pP4VUYGLBuygy+DQtl/dXLWpnTUmGMqZERM7dtIlIDlej6cLG05LmevfjwxHGtzivR9NBr1llWVhZZjylK9PT0xORexlBaWhpDhw6lT58+/Pnnn8gFnofoKuusLnKZjB2z5vJbxAX23ojV6tzmRkZsmzmHNZcvsfHaVa3Na2poyIdDhvFFyBmd1C8YyuXM6NiZ2OwsEvNy8bVvTUhyUkuNEtRiqVAwvn0H5nf151pGhlbaQTyMtnZ2xOXk4GJpSVqhdnYdhnI5qyZN5Wj8LVZroeD3Qca374CDuTl/XIrQ+tx1acyss8GB/9A46+xUyL+krDNtYm9vj719w8T4UlNTGTp0KD169GDVqlWCnUxjoVKreffYEX4aN5FDcTep1GJ2TnFlJUuDdzKvq7/W5oTqZIaE3Fx2zZ7Hywf2cfFOmlbnr1Kp2HitOvXbz741r/btz6cjgtgWdZ1VkRFaDR3pGxnQrlUrbmRn897AIRgbGvLv0ye1kqL+sPVe6NWH2Z27MmHjOq05GYAPBg2lqKKCNTpwMvZmZlp/EGsSaBr+aqGhs2aR3pyWlsaQIUNo06YNX3zxBZmZmbX/5+TkpEfL6icqM4MJG9dp1cnUkFpYyH/O/kUPZxeySko0VvGt4eeL4VzNuMt/Ro5i0qb1OjuYjc7KZPrWjfjY2jG9YydUajW9XVxxtrTkYFxck0iNFoOzhSXTO3ZiesdOZBQXM2vbZt4+dlinayoMDPh+7ATMjYyYtGnd/6R0a0Iba2s6tnZg4a5tWt952puZsW/uAiZv2qD1Mx+JpkmzcDSHDx8mLi6OuLg43Nzc7vu/plpvml9exqt9A4nLyWHPjRitz+9hY8OnI4KYtmWj1nYEIclJjFq3GqVKxWL/ALZcv6aziv9buTl8dk8KpVKlYmy7Dvxj0FAOxN3gQNxNIu6kNXnlXkdzC/q5ubP3Zix9XN2wMjbm2T27ic3WTKOuIVgqFBRWVLA7NpoDN29oVZ2ijbU1Sfn5zNi6USfhzU+GjWTN5cgW6WRkqupLk/EtkaYZf3qAxYsXo1ar672aMvtv3uAfg4ZorXFYXXZER3Hg5g3+nDQVS4X2DvOrVCoM5HK8bezYM2c+nVo7aG3uh3Ep/Q7L9u5m9PrVRGdl8nzP3pxfuowtM2Yz3MsbaBrqzQ7m5siAwR6eHF/4FLtnz2Oolzc2Jibsio3m479ONYqTWdjVn/3zFmJqaMjeG7FadTI9XVzZNmMOnjY2OnEyw7y8sTU15acL2ikgbXJIWWf10ix2NM2V2OwsVp45xQ/jJjJh41qth9K+Cg0hp6wUA7l2iyOrVCo+OHmMkd5t+X3iFKZt2UCqFmP/DyOrpIQNV6+w4eoVFAYGdHV0Ir+sDDMjI0KefpYbOdmcT0lm381YYrKykKG7soMa5eaOrR2Y36Ubfd3cMFcomLRpPdczM1gSvIuEvFwdrV4/lgoFXwSNwc7UlNnbNmu9N9DANh58ETSa5fv36KRxm5FczvGEeM6nJGtdH1CiaSM5Gh2zMyaa+NxcnZzXAPwZeQmFgQE/jJ3AR6dOcFdLSs1QLSYZmpJEYUUFEzv4Epaa0mgdDyuUSi7UkfPp/dtPdHN0oq+bO04WltzMzubSshfIKS0ltbCA3bHRbLl+jZHePhSUl3O3uIiiigqySkpobWaOsWH1jkipUnOnqBBbE1Nam5vhammFo7kFm65fZVy7DiwJ6I6blTWmRkYMXf07AFcz7vJbxAXi6ziWxlYXtjExoaSykpDkJNZdidTJjbpjawee2bOLK3fvan3u1mbmbJ4+k+lbN5FTqr2zpCaH1CagXiRH0whcvpvOxA6+WBubsPZKpNbnr1AqCUtLYdP0mSzYuY0ULSog1DTHcrawZM+c+ayKjOC3iItaVe1tCBVKJeFpqfdpyQX8/D1OFha4WlrV2tnHzZ0OrexxNLfgfGoy/zhxjLcHDKSbozMAKQX5LN69g0X+AYzw8iG1sICUgnxkVDee++DkMVILCmsP1rNKSojK1J/+lqulFe8PGoKFQsGCndt0kmY8qYMvBeXl/HwxXOtzQ3Wa9Hdjx7P5+jW9OJnGlEOS1Jvrp1moN2uLxqijeRgulpbsmDmX5/cFcyn9jk7WmNGxM08HdGfchrU6qbR2trDknQGDOJ+aorWCQImHM6ZtO/45dDg/Xwhn9eVLOtkVz+ncled79mbhrm06CZcBLA3oQU8XV57bF6yT+R+FiaEh68dNpIeXd6PU0Qzt+a7GdTQnLnzS4uponkhHM/TnH0gobfzGSgPaePDp8CAmblqnsyc7a2MTCivKcbW00koXxYcxzMub+V278a9TJxv9rKKlM6ZtO2KysmpTzDNLdNPSeFy79rzerz/zd27Tav1NXWSAwsAQIwO5XrTM3ujXHwtgcZ9+jeNoeryjuaO5uLLFOZpmkXWmbVYMGaY15WIhnElK5K2jh3RaoJhfXkaHVvZsmzkbfydnna1z6nYCJxIS2Dx9Fm/3H6SX72dLo32rVqybOp1lPXujMDAgs6RYZ07G2tiEk7cTmLlts86cjLeNLTtnzaVKpdSLk/G2sWVmpy58raX+Sw1CDag0uFroY/8T6WgqqqqY2amLXtY+m5xEx9atea5nb52tEZ2VyauHDvDL+En0c9ONkKhSrWbtlUhGrVvN7bxc1EAXB0cMm6hiQ1PGUC5HBnw0ZDjBsTFM2bRep2nS7w0czCfDR1BcWamzpAYzIyN+HD+RPyMv6S3DLK2okGf27CK3rKzR1pTaBNTPE3lX+PdfpxjVtq3e1r+dl8esTp0Z07adztYISU5i2d7dtG/VMIkfseSWlbLp+lVkwEt9+nFy8RKW9eiFtXHjnoE1R/zsW/OfkaPYNnMOamDO9i1suX5NZw+1hnI5nwwbSVdHJ946qlvVgncHDuZ8Sgq7YqN1us7DGOblTcfWDlzWshBocyY3N5cFCxbUqtkvWLCAvEecy1VWVvLWW2/RpUsXzM3NcXFxYeHChaSlCZeoeiIdTUJeLk/v3qm3IsCC8nKe3bObFUOG6TS8dSn9DqsvX2J023a82jdQq71nHkQNPLNnF4t3baeNtTXj23dABnjpoFi1JfBM9578PH4SMVmZLNixtVHWdDS3QGFgwKJd23UayjKQyfgh/Dz/On1CZ2s8CkuFgn8PHUG5PpQl1GhYsKk70+bOnUtkZCQHDx7k4MGDREZGsmDBgoe+v6SkhIiICP7xj38QERHBjh07uHHjBhMnThS89hOZDFCTdbZj5hz+/dcpIrQsItlQ/B2dSMzP16pGVX3YmJjwzaixyGQyXjm4X+fr1dDG2ppN02YRk53JH5ciOJOU2CjrNkXMjIyY7teJRf4BLNy5jYLyckoqKxslrNTbxZWpHTvxto53MQCLugXgY2fHByeO6Xyth/Hh4KFAdX8oaFz15mHd3sLQQLxSR5WynOOXP9O6rdHR0XTs2JHQ0FD69OkDQGhoKP369SMmJoYOHTo0aJ7w8HB69+5NYmIibdq0afD6T+SOpoYfL4Tx76HD9dZ2OPJuOsWVFfwyfhL2ZmY6WyevrIyng3dyKf0Oy3v30dk6D5KUn8/gP39jV0w0bwQOwNfeHnszM1qbmTeaDfrGQCajY2sHTi1eSoCzM68c3E9qYSGFFRWN4mSWBvTgm9Hj2BkdpfO1gnzasrR7D74PO6/ztR6GXCbD2tiErxozAUAHPNgZuFzDBKJz585hbW1d62QA+vbti7W1NSEhDW/1nZ+fj0wmw0Zga/kn2tEcib9FWmEhC7r5682Gmgr43ydOwVKh0Nk6KrWab0JD+Pfpk/jZt2Zel246W6sulSoVwbExTN60npisLLo7u7B/3kK2zJjN0wHdMTFsWTXDMiDAyZn3Bg7mr6eWMsqnHTezsxi/YS2vHjrA1QztV90/jM4ODoz0acvkzes5n5qi07WsjI35YPBQlgTv1Ko6hRAMZDIczS147fCB2gLeRkeTjLOaC3B3d7+vO/DKlSs1Mis9PR0Hh//VLXRwcCA9vWHnWGVlZbz99tvMnTtX8G6rZf2Vi+Dd40f03kb2l4gLtDIz4/+NGc9Tu3fodC011WdE0zt2ItDdnbePHm7UP8rDt+I4Fn+LPm7uDPfypkqlYpRPW9pY27D/5g1SC7WnatBYyIAeLq4UlJeRU1rKiiHDOBh3k4U7t9fWGDXmzberoyO9Xdz47dJFZm3brPP1WpuZk1lSzJh1q/V3gwde6N0Xb1tbXjm4X282aEsZIDk5+b6bufFDuuCuWLGCjz766JFzhodXKz7I6oncqNXqel9/kMrKSmbPno1KpeKHH3547Psf5Il3NBnFxZgaGvL5yFG8d/xoo0ur1LDyzGncrayRAUb3BB11RWphATO3buLN/gP5z8jRPN/IFdtKtZqQ5CRCkpMASC4ooK+bO9tmziazuITN16+y/uplTA0NtS4cqQ1kgLGhISq1mhWDhzHMy5v0okK+Cg3hRnY2kzat15ttT/l3Z1mPXrx7/EijrOdn35pVk6Yyc9smkvJ1VyD8OPydnJndqQvjN67Vmw3axMrKqkG7huXLlzN79uxHvsfT05MrV65wtx4Nu8zMTBwdHR85vrKykpkzZ5KQkMDx48dFnR098Y4GqjtMypDxZv+B/Pv0Sb3ZkVyQz8xOnQnyacvze4N1JsQJ1SGtj/86hbGBITYmJszs2JlVkRE6XfNhRGVm8NGpDP556gTdnJyxuvf0tmrSVFytrLicns7x2/HsiI7SqWLzw5BRLWXyQu++dHN0oouDI9+GhfL7pYtcSr/D9+GhjaJu/ThG+bRlTLv2TNncOA3FfGzt+H3iFN49fkSvTgbg9X79eefYYf0LdjZyh82Gdinu169aGSEsLIzevatr+M6fP09+fj6BgYEPHVfjZG7evMmJEydo1aqVIPtqeKKzzupioVCwb+4C3j9+lL/0mB0ll8n4ZtRYDOVyXjywt1EOjO3NzPhoyDDat7Ln/eNHdR7PF4KrpSX+Ts4YyOUEx8awdsp0bE1MScrP42rGXX68EEY3RydMjYy4W1TE3eIiwc3a7ExNcTS3wMnCgpisLEqrKnmr/0AcLSxob2fPb5cusDryEst69ubK3XSu3k3Xa4ioLoZyOUsCepBaWMD+mzeQQaMVSL7aN5CYrEwOxN1slPUehpFcjkwme2gUoDGzzoZ3fEPjrLNjUV/oxNYxY8aQlpbGzz//DMCzzz6Lh4cHe/bsqX2Pr68vK1euZMqUKVRVVTFt2jQiIiLYu3fvfTsfOzs7FALOlKUdzT2KKip4+cA+VHrWgFCp1bx2+ADfjRnPYE8vjifE63zNrJISXti/l8Eenrw9YBDzdmzVWWdNoaQWFt63W3hq9w7a2bXCrc4fYYCzM8M8vXEwt8DY0IChq/9gSUAPZtVRf5i2ZQOB7m14vd+A2tdeOrgXMyMFP4ydQHpxERlFRfx0MZyozAwupKVxt7iIhNyc2vWbWrOu3i6u/GvYCOJzcwmOjWm0s0ZXS0tcLK34OrTh2Uq6Ymzb9kzo4Nvo4d/myPr163nppZcICgoCYOLEiXz33Xf3vSc2Npb8e7vTlJQUgoOrv6/+/v73ve/EiRMMGTKkwWtLO5oHUBgYsLhbAL9duqjXJIGaENEgD08upKU2+o3/p3ETOZ10m41XrzRL+SUbE5PaEBxASkEBZkZG2Jma1r6WUVzc5NtF10dNU7a/Bw7g4p20RnkYqaFTawd+mTCZb0JD2Bp1rdHWrQ9vG1s2TZ/Fgp3bHinZ06g7Gr/XNd/RRH8piWq2dCqVSnq7ufFa34fHLRuDmpv7IA9PNk2b1ei1J/85+xdj27Vnx6y5dNCxjI0uyCsrIyk/v/ZSqdUUVVTc91pzczIyYFanLpxYtARbE1M+DznTqE6ml4srqyZN5f3jR/TuZAC+HDWGTxqpfXaD0VJ6c0tDcjQPoAZeO3SA8e19a/vV65N/nz7J7thots+cg6tl4z3hxOflMn/HNlZFRmBsaIC1scl9uwGJxsXO1JStM+Yw2dePRbu2NZq6Qw1mRkbczMlm0a7tnLid0KhrP4xn9+zWm5baw5BENetHOqOph4LycpYf2IO3rZ2+TQHg90sXicrMILOkGGMDQ8qVjfckHhwbA8BwL28+GzGKPTdi+C3iQpPIsnoSCHRvg5FcztnkJFZFXmTfzRuNur4MeKv/INysrFh+YC95jaiE/DDmdemGs4UFXzTz6v8nCWlH8xCuZWQQHBvDVN+OGBvo3x+fS0mmUqlk28zZTPXr2OjrH0uIZ+TaPykoL2f15OkYyeV6EyV9Ehjp7cOuWXN5b+BgZDIZVSpVozsZYwNDvh0znk4ODrxzTPc6aQ2hm6MTL/buy8ZrV/RtSv1oJKipYWp0E0b/d9AmTl93d3q7uvF2E/hDUwPL9+9l1aQpuFlZ8//On2vU9XPLSvk6NIT/nj+HSq3mh3ETMJDJ+TH8PJGSHLvGGMnldHd24XxqCm3tWvF1aAinEm/rzZ421tbklJXy6qH9eqmvepAax/fm0UNNd0etUoNMA2ehapmORtrRPIYPThyji6MjMzp21rcpACTm5zFtyyba2bXC5iGZc7qmJhvvlYP7OZ4Qz1ejxvB2/0F6saUlYKlQ8JR/d04sXsJi/+7IqBZ81ZeT8bC24d0Bg7mZk80HJ441CScDUK6sYvHuHZzWo/OVEIfkaB5DWVUVf9u35766DX2TW1bKiwf2UlJZyYeDh+pU+flRVCiVbL5+lRFr/+TXiHBMDQ05smAxL/fph6ulpV5sak70cXXDSC5npHdbOrV2YMnunTy/L1iv6eT93duwafpMorMy9GjF//J6v/5MaO9LfG6Ovk15NFLorF4kR9MAEvPz+Do0hL5u7rg0oRtopVLJ3eJids+eT18dtWxuCCq1muzSUkqrqli2NxgzIyN2zprHuHbVzc+ks5z/w8bEhGU9enF80dO8O3AwjhYW7IiJ4o0jB/Weputta8enI4JYvn8vO2OaTjbXVL+OjG7bjlOJTSPb7dFo6mRapqORzmgE4G1ryweDhjBj6yaKm0DlvJrqavWLaal8NnIUM7ZsJFvPWk/xuTmsPHOaL0LOYCCX07G1A6smTWV3bDRbrl/jZk62Xu3TBwYyGUM8vYjPzUUGuFhasnz/XqIym8auwd7MjED3NgTHxjBy7Z9Nqr7I196eNwMHMnPbJgo07MkioT+kHY0ANly9wrmUZL4dOx4jedP51oWnpRK09k+yS0tZGtCDVk2g3qVSpaKsqorrmRlM3ryegvJy/pg0hT1z5vN6v/742bfWt4k6x1JhzKcjgjj79LMsCeiBlbEx8Xm5fHjyeJNxMv3c3AmePR9ni+qdelNyMnKZjBvZ2czevlnvop0NRgqd1UvTuVs2Ez7+6xSX09ObXMOuqnsHtiaGhgTPWUAfVzc9W/R/pBUW8m1YKINW/cY/7rVi6HSvCdOnI4KY07lroxaj6gK5TEaAkzMv9+nH9plzWNwtgOLKCi7ducO0LRuYu2Mrl5tYZl4fVzc+DxrNywf38fPFcH2bcx9trK3ZP3chFgoFt/Py9G1Ow1GpNb9aIJKjEYhKrea/589hbGjIG4ED0E8T6IfzXfh5Xj98gK9HjaWdnThJb12hprp99bdhoWyLuo5cJuP07dt0c3Riy4zZvNSnHwAjvHzwtrXTW4vthmBmZIS/oxNzOnelj6sbxgYGvDdwCAYyGSvPnGbd1cuo1Go2X7/a5FJx7c3M6OniSnhaKhM2rCM8LVXfJt2Hi6Ula6dM55eIcClc1kJoWo/lzYiC8nK6ODjy8bCRjdZkqqGEpiQTtO5PiioqGOXTlvC0VP336agHlVrN/rgb7I+rLkQ0NjBELpMxvkMH/Oxb42JpxS8Xw/k2LJSpfh1JLyoiNiuzUc+hZICHjQ2+9q3xtW/NueQkrmdmcPbpZ7iRnU1sdhY3srMorapi+taNjWaXWPq4uvHVqLH8FnGBC2mpjS5l0xA+HDyMny6EsyM6St+mCEetqr40Gd8CkRyNSCqUSpbt3c0fE6fw98ABfB5yRt8m3UfRvX4pPnZ2/HPocL4JPcfm61f13rb6UdRI69S04lUYGGBmZARUZ0RN7uBHB3t7TiQk8Paxw7w/aAiWCmOyS0u4mZ3Fzpho2tm1wlAuJ7eslCqViqySEiwUCkwNjWrXySopxtjQEHszM+xNzWhlZkZ4Wio2JiYs6haAvZk5rcxM+TE8jIS8XH6bMIWYrExis7PILSulqKKCbj993/jfIA2Z5teJV/sF8tqh/U2q51ANdqamqNRqXjywV2+dbjWmkRufNRckR6MBZVVVLN2zq7YFc1P8FfkhPIxDcXF8OHgohnI5a69E6tukBlOhVNbecL6o48hr0qUPxd3E1dKKVmZmtTJBY9u1Z6iXN7YmJuSVlTFp03rmdenG/K7dasePXb+GgW08eSOwP1klJWSVlhCXk0NZVRUJeblcSEslq6SEG9nZ5JeXMWLtqkb81NrFUC5nftdunEtO5mj8LQ7E3WgyvYbqYm1swtop01l7OZJN16/q2xzxqDRMUW6hZzRSPxot8VrfQCpVKr4NC9XqvNrEQCajn3sbpvl14tMzp7lbXKRvkyR0SKB7Gz4YNJTkgnxWnDxOamGBvk2qFwuFgnVTpnM68TZf6aCZWmP2oxnh+hyGcg360ajKOZr6k9SPRqJ+/oiMYGy79jzbvae+TXkoSrWa8NRU4nNz2Dt3Pst69GpyyQwSmmMolyMDFnT1Z+WZUzyzZ1eTdTIAPrZ2/JWUqBMn0+hI6c31IjkaLZFXVsaCnduY3rFzk64RKVdW8W1YKJM2rUcmk6EG3K2s9W2WhBYwNjDkpT792DVrHgDP7wvWqyjn4zA2MGRxtwCu3E3ny5Yi+a9GQ0ej7w+gG6QzGi2SVVLChI3rKFdW4WNrx60mrMuUVljITxfCkAH/HT2W0qoq/t/5c03ykFji8fRxdePLUWMIS0nh6eAdTf5+ZWxgyA/jJpBVUqJvUyQaAWlHo2XKlVUoDAz4efwklvXopW9zHosamL51ExuvXeHfw0Yw1bfxe91IiMNQLmdWpy60b9WK23l5LA3eyWuHD5BRXKxv0x6JkVzO6slTyS4t4Z1jh5u8UxSEFDqrF2lHowMqlEpmb9/Mn5OmYWdqysozp/Vt0iNRqdXsvRHL/ps3MJTLCXRvw+JuAXx57qzehR4l/hcZMKGDL6/0DeR2Xi7haancLS5qFskdhnI5lSoVP4Sf53RSor7N0T4qFaBBLUwTacmgbaQdjY7IKilhzvbNlFZVNekK97qo1GoqlErCU1M4lXibVZOm8vWosZL6chPC2cISmUzGgDYe/P3wQZ7evbPpS+ffw9XSiv1zF+JhbdMynYzEQ5EcjQ4prKjgm9AQXK2s+GLk6GZzw65UqVh/9TLD1vzBidvxVCiVjPT2oa2dnb5NeyKRy2SM8PJh56y5fDh4KCq1mjePHOLinTR9m9Zg2rdqxeYZs/jt0gUS8/P0bY7ukEJn9SI5mkYgtaAAFWpWT56GpUKhb3MaTFlVFcGxMQC4WVnz56RpbJo2kxFePnq27MnA2ri61uvvgQNY2r0HP4SH8dy+YD1bJY5lPXrxr1Mn2HL9mr5N0S2So6kX6YymEVDeewJ9Z8AgPh0RxAv79+rbJMGsioxg9eVLDPH0wkpRXZC2JKAHR+Ljmo+EezNABgxo48GcLl3p5eLK8DWr+CLkDMpmegMa2MaD5IJ8Xj98UN+mSOgRydE0IivPnMZSYYyFQoG1sXGTU/V9HCq1muMJ8UD1oa6NiQlbps8mNjuLr0NDiEy/o2cLmy92pqYUV1Qy2NOT53r0Yv3VK7x26ECT6g8jlAntfXl34CCWBu/StymNhyRBUy+So2lkCivKGeblzT+HDmfZnt1cbyINsIRSpVLx5bmz/Pf8OUZ6+6BSq2hlasrr/QZwLOEWZ5OTmvVNsjGwVCgY396XEd4++Ds5s2zvbg7fiuPwrTh9m6YxU3078krfQOZt30p8Xq6+zWk01GoVag0UmDUZ25SRHI0eOJ4Qjwz4Y9IUvjx3tlnHratUKg7E3QSqb5xRWRks6OrPl0FjWH5gL2GpKVgZG0uFeffo2NqB4V7enElKJK2wkG5OTmy6dpXl+/dQ2gIcs6XCGFBz+W46M7dtIr2o6adcaxW1hs3LmmmI9HFIjkZPHEuIZ+rmDbhb2yCXyTA3MqLwnrR/c6WwooJ1Vy6z7splzI2MUKnV+NjasWbKdJLz8ziacIst1689UU7HUmGMXCbDyEDOrtnzKCqv4GjCLXJKS7lbXMTbRw/r20St4e/oxH/HjOPLc2drk0gkJKAZOZqJEycSGRlJRkYGtra2jBgxgs8++wwXFxd9myaa1MJCUgsLGdDGg4+HjeDlA/uIbGLtfsVSfE+KPjorkz6//UR3ZxdGePlgpTDGzdKKdwcNIfLOHSLT73AmObFFdFI0kMkwlBtgamTIuwMHE+DkjL2ZGR+ePE5wbAyzt20mpaDpiltqwvyu3Vjeqy9vHT3UpPXVdI5awzMaaUejX4YOHcq7776Ls7MzqampvPHGG0yfPp2QkOav+HomKZEPThzjp/GT+DXiAr9fuqhvk7SKSq3mQloqF+61DFYYGPCfs3/h7+jE2HbtSSnMp6iikrf6DyQy/Q4xWZlEpqc3ye6PNVgqjKlSKTE1MmJZj14EODnTwb41/zhxlAM3b3A+JYWfLoSTkJtTe9tpiU7GytiYwvJy4nNzmbRpfbNQJ9ApKhXIpA6bD9JsHM2rr75a+28PDw/efvttJk+eTGVlJUZGRo8Y2Tw4lXibSZvWE+juDlTfjJttl8HHUKFU3ud4AMyNjNgWdQ1/J2dmd+5KSWUlKQUFbJo+k9t5eSTm57EzOoqLd9JwtrAks6SYKh3LdZgaGuJubU07u1acS0nGwdycT4aNxMPGFoDXDu2vbZL2ecgZrmbcrU2A2B59Xae2NQV6urjyzaixvHZoPyHJSfo2R6IJ02wcTV1ycnJYv349gYGBj3Qy5eXllNcJyRQ08SfKu8VF7IyJxtvWjj8mTuHFA3u5mnFX32Y1CsWVlRyJv8WR+Fu1r8mAGVs34WFtg6eNLWVVVZgaGrJx2kxam5tTqVTyS0Q4P4SH8dmIUajVarJLS7iacZeDcTcZ5OFJK1NTAArvnY10d3bBw7q6LYJcJmd79HUGeXgyuYMfdqam2Jma8XTwDnq5uLJyeBBphQXcyMnmemYGKQUFfHjyOIn5efeF+n6NuNCo36umwFP+3Xmme0/eOHKQsDoPDE88UuisXpqVo3nrrbf47rvvKCkpoW/fvuzd++jCx5UrV/LRRx81knXaIz43hxWnjvPbxMn8cSmCXy6GtyyF2waiBtKLikgvKrqvfcGQ1b8D1TsOA3m1uMXeGzG0NjenlakZRvJqqZ9OrR3wsLYBqp340YRbeNnY0svFFajeWW2Pvk5GcRHHb8eTU1pKTmkJ+WVlHIi7WZtNV5cnxfE/DHMjI4orKymurGDK5g1SqOwB1CoVag1CZy01vVmvrZxXrFjxWEcQHh5Oz57VXSuzsrLIyckhMTGRjz76CGtra/bu3YvsIaKV9e1o3N3dddLKWRc4mlswvWMnvg8/j6mhYYtIf5Vovkxo78t7AwczdcsG0ppRsXFjtnIeZjYbQ5l4makqdQXHSza1uFbOet3RLF++nNmzZz/yPZ6enrX/tre3x97envbt2+Pn54e7uzuhoaH069ev3rHGxsYYG4vv361v7hYX8X34eYwNDDkwbxF/Xo5gdeSlJ3J3I6E/TAwN+TJoNB7Wtizevb1ZOZlGRwqd1YteHU2N4xBDzUasvAWkxT6OcmUV83Zs4bORoxjl046XDuwjs6RpN7eSaBm4WFqSVljIidsJ7I7ZT2UL7ZeiNVRqkEmO5kGaxRlNWFgYYWFhDBgwAFtbW+Lj4/nggw/w8fF56G6mpZFaWMiCHduY1rEThRXlOJibN/lOihLNFytjYz4aMgwPaxumbdnItqiWn0UnoTuaRZsAU1NTduzYwfDhw+nQoQNPP/00nTt35tSpU806NCYUNbAt6jplVVW83X8QqydPw9nCUt9mSbQw/Oxbc2DeItKLipi9fYsUqhWCWl1dCyP6apnf7Waxo+nSpQvHjx/XtxlNijeOHORp/+4Ez5nPipPH2XczVt8mSTRz2rdqhcLAgITcXF7Yv0dS4xaBWqVGrUHoTI+5WTqlWTgaif9FpVbz26WLBN+IwUgux9XSirHt2rPmciTlSik7TaLhuFlZ8WrfQPq5tWHFqeNcy8iQnIxY1CpAUgZ4kGYROpN4OBnFxaQWFqJSq+ns4MixRU8xu1MXDB6S8i0hUUNNa/E3AwdyIzubYWv+aBEtCiSaHtKOpoVwp6iQlw/uw8++NUsCerAjJgp7E1MyioukGLvEfVgqjFnWsxfj2rVn1LrVvHRwn75NajFIobP6kXY0LYzorEzeOHKQCqWS1wP7EzxnPsO9vJH2NxIAvVxcObbwKSwVCmZs3dRi9fT0hkaJAKoWGzp7onY0NU8LqrIyPVvSOLyxZzcD23jwTPdedLdtxWchf+nbJAk9YSiT076VPdeTk5i0+g9SC5u27p82qfl7b4zdQhWVGtVrVlGpPWOaEHqVoGlsUlJScL+njiwhIfFkkZycjJubm07mLisrw8vLi/R0zftJOTk5kZCQgEkzkMlqKE+Uo1GpVKSlpWFpaflQfbQaanTRkpOTW5Tm0INIn7Nl8SR8TqGfUa1WU1hYiIuLC3K57k4LysrKqNBCl1yFQtGinAw8YaEzuVwu+InGysqqxf7B1kX6nC2LJ+FzCvmM1vdaQ+gSExOTFucgtIWUDCAhISEhoVMkRyMhISEhoVMkR/MQjI2N+fDDD1u8lpr0OVsWT8LnfBI+Y0vjiUoGkJCQkJBofKQdjYSEhISETpEcjYSEhISETpEcjYSEhISETpEcjYSEhISETpEcTQO4ffs2S5YswcvLC1NTU3x8fPjwww+1UgXclPj4448JDAzEzMwMGxsbfZujNX744Qe8vLwwMTGhR48e/PVXy9N8O336NBMmTMDFxQWZTMauXbv0bZLWWblyJb169cLS0hIHBwcmT55MbKzU8K85IDmaBhATE4NKpeLnn3/m+vXrfP311/z000+8++67+jZNq1RUVDBjxgyef/55fZuiNTZv3swrr7zCe++9x6VLlxg4cCBjxowhKSlJ36ZpleLiYrp168Z3332nb1N0xqlTp3jhhRcIDQ3lyJEjVFVVERQURHFxsb5Nk3gMUnqzSD7//HN+/PFH4uPj9W2K1vnzzz955ZVXyMvL07cpGtOnTx+6d+/Ojz/+WPuan58fkydPZuXKlXq0THfIZDJ27tzJ5MmT9W2KTsnMzMTBwYFTp04xaNAgfZsj8QikHY1I8vPzsbOz07cZEo+goqKCixcvEhQUdN/rQUFBhISE6MkqCW2Rn58PIP0dNgMkRyOCW7du8e233/Lcc8/p2xSJR5CVlYVSqcTR0fG+1x0dHbUi5y6hP9RqNa+99hoDBgygc+fO+jZH4jE80Y5mxYoVyGSyR14XLly4b0xaWhqjR49mxowZLF26VE+WNxwxn7Gl8WBLCLVa/dg2ERJNm+XLl3PlyhU2btyob1MkGsAT1SbgQZYvX87s2bMf+R5PT8/af6elpTF06FD69evHL7/8omPrtIPQz9iSsLe3x8DA4H92LxkZGf+zy5FoPrz44osEBwdz+vRpnTUyk9AuT7Sjsbe3x97evkHvTU1NZejQofTo0YNVq1bptIGSNhHyGVsaCoWCHj16cOTIEaZMmVL7+pEjR5g0aZIeLZMQg1qt5sUXX2Tnzp2cPHkSLy8vfZsk0UCeaEfTUNLS0hgyZAht2rThiy++IDMzs/b/nJyc9GiZdklKSiInJ4ekpCSUSiWRkZEAtG3bFgsLC/0aJ5LXXnuNBQsW0LNnz9qdaFJSUos7XysqKiIuLq7264SEBCIjI7Gzs6NNmzZ6tEx7vPDCC2zYsIHdu3djaWlZu1O1trbG1NRUz9ZJPBK1xGNZtWqVGqj3akksWrSo3s944sQJfZumEd9//73aw8NDrVAo1N27d1efOnVK3yZpnRMnTtT7s1u0aJG+TdMaD/sbXLVqlb5Nk3gMUh2NhISEhIROaR4HDRISEhISzRbJ0UhISEhI6BTJ0UhISEhI6BTJ0UhISEhI6BTJ0UhISEhI6BTJ0UhISEhI6BTJ0UhISEhI6BTJ0UhISGgdfXT8TE1NZf78+bRq1QozMzP8/f25ePGizteVeDySo5GQkNA6jd3xMzc3l/79+2NkZMSBAweIioriyy+/bFEtyZszkjKAhISETqmv42dFRQXvv/8+69evJy8vj86dO/PZZ58xZMgQUWu8/fbbnD17lr/++ks7RktoFWlHI9FiWbNmDa1ataK8vPy+16dNm8bChQv1ZJUEwFNPPcXZs2fZtGkTV65cYcaMGYwePZqbN2+Kmi84OJiePXsyY8YMHBwcCAgI4Ndff9Wy1RKi0a/UmoSE7igpKVFbW1urt2zZUvtaZmamWqFQqI8fP65Hy54sAPXOnTtrv46Li1PLZDJ1amrqfe8bPny4+p133hG1hrGxsdrY2Fj9zjvvqCMiItQ//fST2sTERL169WpNTJfQEtKORqLFYmpqyty5c1m1alXta+vXr8fNzU10iEZCcyIiIlCr1bRv3x4LC4va69SpU9y6dQuA27dvP7Yz7PLly2vnVKlUdO/enU8++YSAgACWLVvGM888w48//qivjylRB6kfjUSL5plnnqFXr16kpqbi6urKqlWrWLx4sdTKWY+oVCoMDAy4ePEiBgYG9/1fTd8jV1dXoqOjHzmPra1t7b+dnZ3p2LHjff/v5+fH9u3btWS1hCZIjkaiRRMQEEC3bt1Ys2YNo0aN4urVq+zZs0ffZj3RBAQEoFQqycjIYODAgfW+x8jICF9f3wbP2b9/f2JjY+977caNG3h4eGhkq4R2kByNRItn6dKlfP3116SmpjJixAjc3d31bVKL51EdP9u3b8+8efNYuHAhX375JQEBAWRlZXH8+HG6dOnC2LFjBa/36quvEhgYyCeffMLMmTMJCwvjl19+4ZdfftHmx5IQi74PiSQkdE1+fr7azMxMrVAo1Js2bdK3OU8Ej+v4WVFRof7ggw/Unp6eaiMjI7WTk5N6ypQp6itXrohec8+ePerOnTurjY2N1b6+vupffvlFS59GQlOkOhqJJ4KFCxeyb98+0tLSMDY21rc5EhJPFFLWmcQTwZ07d5g3b57kZCQk9IC0o5Fo0eTk5HD48GHmzZtHVFQUHTp00LdJEhJPHFIygESLpnv37uTm5vLZZ59JTkZCQk9IOxoJCQkJCZ0indFISEhISOgUydFISEhISOgUydFISEhISOgUydFISEhISOgUydFISEhISOgUydFISEhISOgUydFISEhISOgUydFISEhISOgUydFISEhISOiU/w+9RIEJmCFGfQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Generate spatial grid\n", "x = np.linspace(*extend[0], n_pot_steps[0])\n", "y = np.linspace(*extend[1], n_pot_steps[1])\n", "z = np.linspace(*extend[2], n_pot_steps[2])\n", "\n", "x3D, y3D, z3D = np.meshgrid(x, y, z,indexing=\"ij\") # Ensure correct indexing\n", "\n", "# Compute potential (Replace with actual function)\n", "pot = potential(x3D, y3D, z3D)\n", "\n", "state_number = 2\n", "\n", "# Create figure and axis\n", "fig, ax = plt.subplots()\n", "im = ax.imshow(states[state_number, :, :, 0], extent=[*extend[1], *extend[0]], origin=\"lower\",\n", " vmin=np.min(states[state_number]), vmax=np.max(states[state_number]))\n", "\n", "plt.xlabel(\"y\")\n", "plt.ylabel(\"x\")\n", "plt.colorbar(im)\n", "\n", "# Initialize contour as None before defining it globally\n", "contour = None\n", "\n", "# Animation update function\n", "def update(frame):\n", " global contour # Ensure we're modifying the global variable\n", "\n", " im.set_data(states[state_number, :, :, frame]) # Update image data\n", " ax.set_title(f\"z={z[frame]/si.um:.3f}um\") # Update title\n", "\n", " # Remove old contours if they exist\n", " if contour is not None:\n", " for c in contour.collections:\n", " c.remove()\n", "\n", " # Redraw contour plot\n", " contour = ax.contour(pot[:, :, frame], levels=10, colors='white', linewidths=0.7, extent=[*extend[1], *extend[0]])\n", "\n", "# Create the first contour plot after defining update()\n", "contour = ax.contour(pot[:, :, 0], levels=10, colors='white', linewidths=0.7, extent=[*extend[1], *extend[0]])\n", "\n", "# Create animation\n", "frames = n_pot_steps[2] # Number of slices\n", "ani = animation.FuncAnimation(fig, update, frames=frames, interval=100)\n", "\n", "ani.save(f\"state{state_number}.gif\", writer=\"pillow\", fps=10) # Save as GIF\n", "\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "base", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.3" } }, "nbformat": 4, "nbformat_minor": 2 }