hit_analyse_v2/Scripts_20201214/hit_analyse_v2.c
Blake Leverington 6f25f8675f fixed folders
2021-01-25 12:58:41 +01:00

441 lines
15 KiB
C

#define hit_analyse_v2_cxx
#include "hit_analyse_v2.h"
int main(int argc, char **argv){
opendatafiles(argc, argv);
histograms(argc, argv);
analyse(argc, argv);
closedatafiles();
return 0;
}
int opendatafiles(int argc, char ** argv){
if (argc>2){
//open bpm data file
filename = Form("%s%s.da2",argv[1],argv[2]);
file.open(filename, ifstream::in | ifstream::binary);
if (!file.is_open())
{
std::cerr << " ### Hitdata: File could not be opened!" << filename << std::endl;
return 0; //file could not be opened
}
else {std::cout << filename << " opened successfully." << std::endl;}
}
string visualize_check = argv[5]; //plot data
if (visualize_check == "vis_true") {visualize = true;}
else{ visualize= false;}
return 1;
}
int closedatafiles(){
if (file.is_open()) file.close();
// if (timestampfile.is_open()) timestampfile.close();
//if (offsetfile.is_open()) offsetfile.close();
rootFile->Write();
rootFile->Close();
}
int analyse(int argc, char **argv)
{
int first_frame = 0; // 1440000
int nr_frames = -1;
int increment = 1;
//Read first record to find board configuration
Fullframe sampleframe;
if (sampleframe.read(&file) == 0)
{
std::cerr << " ### Hitdata: First frame could not be read!" << std::endl;
file.close();
return 0;
}
else {
std::cout << "Sample frame size (bytes): " << sampleframe.sizeInFile() << std::endl;
}
//Check file size
file.seekg(0, std::ios::beg);
std::streamsize fsize = file.tellg();
file.seekg(0, std::ios::end);
fsize = file.tellg() - fsize;
//Determine real frames to read
unsigned int max_frames = fsize / sampleframe.sizeInFile();
if ((max_frames == -1) || (max_frames < nr_frames))
nr_frames = max_frames;
std::cout << " Hitdata: Nr frames to be read: " << nr_frames << std::endl;
///set the background levels from first N events
int bkg_frames = 1000;
if (set_background_v2(0, bkg_frames)==0) return 0;
BPMbeamrecon_Zeroed.Position = -128.;
BPMbeamrecon_Zeroed.Focus = -1.;
BPMbeamrecon_Zeroed.Peak = -1.;
BPMbeamrecon_Zeroed.Position = -128.;
BPMbeamrecon_Zeroed.Rsqr = -1.;
BPMbeamrecon_Zeroed.Skew = -128.;
BPMbeamrecon_Zeroed.Position = -128.;
BPMbeamrecon_Zeroed.Sum = 0.;
BPMbeamrecon_Zeroed.n_channels = 0;
//read board
//Read!
std::cout << "Reading data starting from frame: " << first_frame << std::endl;
file.seekg(first_frame * sampleframe.sizeInFile(), std::ios::beg);
for (int frame_nr = first_frame; frame_nr < nr_frames; frame_nr++)
{
eventID=frame_nr;
if ((frame_nr%100000) == 0)
std::cout << " Frame " << frame_nr << std::endl;
file.seekg((frame_nr*increment) * sampleframe.sizeInFile() , std::ios::beg);
if (sampleframe.read(&file) == 0) //read the next frame and catch if returns error
{
std::cerr << " ### Hitdata: Frame " << frame_nr << " could not be read! Stopping." << std::endl;
file.close(); //read error, finish!
return 0;
}
for (int boardnumber = 0; boardnumber<4; boardnumber++){
board_b[boardnumber] = readboard(sampleframe,boardnumber);//a bit redundant but does some analysis
// std::cout << board_b[0].integratedsignalamp << std::endl;
if (boardnumber==0&&board_b[0].integratedsignalamp>1000 && board_b[0].maxchannel_amp>100.){
BPMbeamrecon_0 = beamreconstruction(board_b[0], 80.); // do the linear regression fit of the beam;
// std::cout << "doing regression" << std::endl;
}
else if (boardnumber==0) {BPMbeamrecon_0=BPMbeamrecon_Zeroed;}
if (boardnumber==1&&board_b[1].integratedsignalamp>1000 && board_b[1].maxchannel_amp>100.){
BPMbeamrecon_1 = beamreconstruction(board_b[1], 80.); // do the linear regression fit of the beam;
// std::cout << "doing regression" << std::endl;
}
else if (boardnumber==1) {BPMbeamrecon_1=BPMbeamrecon_Zeroed;}
if (boardnumber==2&&board_b[2].integratedsignalamp>1000 && board_b[2].maxchannel_amp>100.){
BPMbeamrecon_2 = beamreconstruction(board_b[2], 80.); // do the linear regression fit of the beam;
// std::cout << "doing regression" << std::endl;
}
else if (boardnumber==2) {BPMbeamrecon_2=BPMbeamrecon_Zeroed;}
if (boardnumber==3&&board_b[3].integratedsignalamp>1000 && board_b[3].maxchannel_amp>100.){
BPMbeamrecon_3 = beamreconstruction(board_b[3], 80.); // do the linear regression fit of the beam;
// std::cout << "doing regression" << std::endl;
}
else if (boardnumber==3) {BPMbeamrecon_3=BPMbeamrecon_Zeroed;}
}
for (int j = 0;j<320;j++){
if (board_b[0].maxchannel_amp>100.) TH2D_b0_signal_vs_channel->Fill(j, board_b[0].channel_amp[j]);
if (board_b[1].maxchannel_amp>100.) TH2D_b1_signal_vs_channel->Fill(j, board_b[1].channel_amp[j]);
if (board_b[2].maxchannel_amp>100.) TH2D_b2_signal_vs_channel->Fill(j, board_b[2].channel_amp[j]);
if (board_b[3].maxchannel_amp>100.) TH2D_b3_signal_vs_channel->Fill(j, board_b[3].channel_amp[j]);
}
rootTree->Fill();
}
return 1;
}
void histograms(int fargc, char ** argv){
//open output root file
rootfilename = Form("%s/root/%s.root",argv[1],argv[2]);
rootFile = new TFile(rootfilename,"RECREATE");
if ( rootFile->IsOpen() ) {printf("ROOT file opened successfully\n");
}
else { printf("ROOT file failed to open. \n");}
rootTree = new TTree("t","HIT Data Root Tree");
rootTree ->Branch("BPMbeamrecon_0", &BPMbeamrecon_0, "Position/D:Focus:Peak:Rsqr:Skew:Kurtosis:Sum:n_channels/I");
rootTree ->Branch("BPMbeamrecon_1", &BPMbeamrecon_1, "Position/D:Focus:Peak:Rsqr:Skew:Kurtosis:Sum:n_channels/I");
rootTree ->Branch("BPMbeamrecon_2", &BPMbeamrecon_2, "Position/D:Focus:Peak:Rsqr:Skew:Kurtosis:Sum:n_channels/I");
rootTree ->Branch("BPMbeamrecon_3", &BPMbeamrecon_3, "Position/D:Focus:Peak:Rsqr:Skew:Kurtosis:Sum:n_channels/I");
rootTree ->Branch("eventID",&eventID,"eventID/I");
TH2D_b0_signal_vs_channel = new TH2D("TH2D_b0_signal_vs_channel","TH2D_b0_signal_vs_channel",320,0,320,1200,-2000,20000);
TH2D_b1_signal_vs_channel = new TH2D("TH2D_b1_signal_vs_channel","TH2D_b1_signal_vs_channel",320,0,320,1200,-2000,20000);
TH2D_b2_signal_vs_channel = new TH2D("TH2D_b2_signal_vs_channel","TH2D_b2_signal_vs_channel",320,0,320,1200,-2000,20000);
TH2D_b3_signal_vs_channel = new TH2D("TH2D_b3_signal_vs_channel","TH2D_b3_signal_vs_channel",320,0,320,1200,-2000,20000);
}
//Function for average
double avg ( vector<Channel> v )
{
double return_value = 0.0;
int n = v.size();
for ( int i=0; i < n; i++)
{
return_value += v[i].chnumber;
}
return ( return_value / double(n));
}
//****************End of average funtion****************
//Function for variance
double variance ( vector<Channel> v , double mean )
{
double sum = 0.0;
double temp =0.0;
double var =0.0;
for ( int j =0; j < v.size(); j++)
{
temp = pow((v[j].chnumber - mean) , 2);
sum += temp;
}
return var = sum/double(v.size() -2);
}
//****************End of variance funtion****************
int set_background_v2(int start_frame, int max_frames){
std::cout << "Setting background levels." << std::endl;
for (int j = 0; j<320; j++){
for (int k = 0; k<4; k++){
board_b_bkg[k].channel_amp[j] = 0.;
}
}
//Read first record to find board configuration
Fullframe sampleframe;
//Read
// file.seekg(sampleframe.sizeInFile(), std::ios::beg);
for (int frame_nr = start_frame; frame_nr < max_frames; frame_nr++)
{
file.seekg(frame_nr * sampleframe.sizeInFile() , std::ios::beg);
if (sampleframe.read(&file) == 0) //read the next frame and catch if returns error
{
std::cerr << " ### Hitdata: Frame " << frame_nr << " could not be read!" << std::endl;
file.close(); //read error, finish!
return 0;
}
for (int boardnumber = 0; boardnumber<4; boardnumber++){
for (int j = 0; j<sampleframe.boards[boardnumber].nrChannels;j++){
board_b_bkg[boardnumber].channel_amp[j] += sampleframe.boards[boardnumber].data[j] / double(max_frames);
// std::cout << j << " " << board.channel_amp[j] << " " << dataptr->sensor_data[j] << std::endl;
}
}
}
std::cout << "Background set." << std::endl;
return 1;
}
bpm_frame_v2 readboard(Fullframe frame, int boardnumber){
bpm_frame_v2 board;
board.integratedsignalamp = 0.;
board.maxchannel_amp = 0.;
// file.seekg(boardnumber*sizeof(BufferData)+4*frame*sizeof(BufferData));
//file.read ((char*)dataptr ,sizeof(BufferData));
if (frame.boards[boardnumber].syncframe.device_nr==boardnumber){
for (int j = 0; j<frame.boards[boardnumber].nrChannels;j++){
//subtract the background from the data
if (boardnumber==0){
// board_0 has the even and odd channels swapped in the hardware.
if(j%2==0){
board.channel_amp[j] = frame.boards[boardnumber].data[j+1] - board_b_bkg[boardnumber].channel_amp[j+1];
}
else{
board.channel_amp[j] = frame.boards[boardnumber].data[j-1] - board_b_bkg[boardnumber].channel_amp[j-1];
}
}
else{
board.channel_amp[j] = frame.boards[boardnumber].data[j] - board_b_bkg[boardnumber].channel_amp[j];
// std::cout << j << " " << board.channel_amp[j] << " " << frame.boards[boardnumber].data[j] << std::endl;
}
//sum the signal across channels
board.integratedsignalamp += board.channel_amp[j];
//find the peak channel
if (board.channel_amp[j]> board.maxchannel_amp) {
board.maxchannel = j;
board.maxchannel_amp = board.channel_amp[j];
// cout << maxchannel_b0 << " " <<maxchannelamp_b0 << endl;
}
//set the channel positions in mm
board.channel_position[j] = 0.8*j + 0.2*(floor(j/64));
//cout << board.channel_position[j] << " " << j << " " << (floor(j/64)) << endl;
}
}
else std::cerr << "Error reading board data." << std::endl;
return board;
}
beamRecon beamreconstruction(bpm_frame_v2 frametoanalyse, double threshold = 30.){
///////////////// linear regression using Integration by parts of gaussian function.
beamRecon beam;
double SumT, SumS, SumS2, SumST, SumT2, SumY, SumYS, SumYT, sigmaABC, muABC,p,c, b, b_den, b_num, SumYYP, SumYYM, MeanY;
TMatrixD M1(3,3);
TMatrixD M1inv(3,3);
TVectorD ABC(3);
TVectorD M2(3);
vector<double> signal_list;
vector<double> channel_list;
SumY = 0.;
SumS = 0.;
SumT = 0.;
SumS2 = 0.;
SumST = 0.;
SumT2 = 0.;
SumYS = 0.;
SumYT = 0.;
b_den = 0.;
b_num = 0.;
b = 0.;
p = 0.;
c = 0.;
SumYYM = 0.;
SumYYP = 0.;
MeanY = 0.;
// const int array_length = sizeof(frametoanalyse.channel_amp)/sizeof(double);
const int array_length = 320;
vector<Channel> channel_reducedlist; //for anomaly detection
vector<Channel> channel_reducedlistcopy; //for anomaly detection
Channel tmp;
int temp_lastneighbour= -128;
for (int i = 0; i< array_length; i++){
if (frametoanalyse.channel_amp[i]>=threshold) {
// cout << "ch: " << i << endl;
// signal_list.push_back(frametoanalyse.channel_amp[i]);
// channel_list.push_back(frametoanalyse.channel_position[i]);
tmp.amplitude = frametoanalyse.channel_amp[i];
tmp.position = frametoanalyse.channel_position[i];
tmp.chnumber = i;
tmp.last_neighbour = temp_lastneighbour;
temp_lastneighbour = i ;
channel_reducedlist.push_back(tmp);
if (channel_reducedlist.size()>1){
channel_reducedlist[channel_reducedlist.size() - 2].next_neighbour = i;
}
}
}
//anomaly detection
//remove channels without neighbours.
for (int i = 0; i<channel_reducedlist.size() ;i++){
if (abs(channel_reducedlist[i].chnumber - channel_reducedlist[i].last_neighbour)<=1 || abs(channel_reducedlist[i].chnumber-channel_reducedlist[i].next_neighbour)<=1 ){
channel_reducedlistcopy.push_back(channel_reducedlist[i]);
// cout << channel_reducedlist[i].chnumber << " " << channel_reducedlist[i].last_neighbour << " " << channel_reducedlist[i].next_neighbour << endl;
}
}
// channel_reducedlist.clear();//empty list to reuse it.
double cluster_average;
double cluster_variance;
if(channel_reducedlistcopy.size()>2){
cluster_average = avg(channel_reducedlistcopy);
cluster_variance = variance(channel_reducedlistcopy, cluster_average);
// cout << cluster_average << " " << cluster_variance << endl;
}
//include all channels +/- 2*variance of the main cluster
for (int i = 0; i< array_length; i++){
if (abs(i-cluster_average)<2*cluster_variance){
signal_list.push_back(frametoanalyse.channel_amp[i]);
channel_list.push_back(frametoanalyse.channel_position[i]);
}
}
// sort(channel_reducedlist.begin(),channel_reducedlist.end(),CompareChannels);
const int vector_length = channel_list.size();
beam.n_channels = vector_length;
beam.Sum = std::accumulate(signal_list.begin(), signal_list.end(),0);
if (vector_length<=3) return beam;
double S[vector_length];
double T[vector_length];
for(int k=0; k<vector_length;k++){
if (k==0){
S[k]=0.; T[k]=0.;
}
else{
S[k] = S[k-1]+0.5*( signal_list[k] + signal_list[k-1] ) * ( channel_list[k] - channel_list[k-1] );
T[k] = T[k-1]+0.5*( channel_list[k] * signal_list[k] + channel_list[k-1] * signal_list[k-1] ) * ( channel_list[k] - channel_list[k-1] );
}
// cout << S[k] << " " << T[k] << endl;
SumS += S[k]; SumT += T[k];
SumY += signal_list[k];
SumS2 += S[k]*S[k]; SumST += S[k]*T[k]; SumT2 += T[k]*T[k];
SumYS += signal_list[k]*S[k];
SumYT += signal_list[k]*T[k];
MeanY+=signal_list[k];
}
MeanY/=vector_length;
M1(0,0) = SumT2; M1(0,1) = SumST; M1(0,2) = SumT; M1(1,0) = SumST; M1(1,1) = SumS2;
M1(1,2) = SumS; M1(2,0) = SumT; M1(2,1) = SumS;
M1(2,2) = vector_length;
M2(0) = SumYT; M2(1) = SumYS; M2(2) = SumY;
M1inv = M1.Invert(); ABC = M1inv * M2;
//calculate b,p,c ---> y = b*exp(-p*(x-c)*(x-c))
p = -ABC(0)/2.; c = -ABC(1)/ABC(0);
for(int k=0; k<vector_length;k++){
b_num += exp(-p*(channel_list[k]-c)*(channel_list[k]-c)) * signal_list[k];
b_den += exp(-2*p*(channel_list[k]-c)*(channel_list[k]-c));
}
b = b_num/b_den;
beam.Position = -ABC(1)/ ABC(0);
beam.Focus = 2.3548/sqrt(2*p);
beam.Peak = b;
beam.Rsqr = SumYYP/SumYYM;
beam.Skew = gsl_stats_wskew_m_sd(&signal_list[0],1,&channel_list[0],1,vector_length,beam.Position,beam.Focus/2.3548); //skewness (symmetry)
beam.Kurtosis = gsl_stats_wkurtosis_m_sd(&signal_list[0],1,&channel_list[0],1,vector_length,beam.Position,beam.Focus/2.3548); //excess kurtosis (well behaved tails)
return beam;
}