325 lines
11 KiB
C
325 lines
11 KiB
C
#define analyse2_cxx
|
||
#include "analyse2.h"
|
||
#include <TH2.h>
|
||
#include <TStyle.h>
|
||
#include <TCanvas.h>
|
||
#include <string.h>
|
||
#include <stdio.h>
|
||
#include <iostream>
|
||
#include <vector>
|
||
#include <utility>
|
||
#include <TFile.h>
|
||
#include <TTree.h>
|
||
#include <TSystemDirectory.h>
|
||
#include <gsl/gsl_statistics.h>
|
||
#include <math.h>
|
||
#include <gsl/gsl_errno.h>
|
||
#include <gsl/gsl_fft_complex.h>
|
||
|
||
#include <TF1.h>
|
||
#include <TGraphErrors.h>
|
||
using namespace std;
|
||
|
||
|
||
|
||
void analyse2::Loop()
|
||
{
|
||
// In a ROOT session, you can do:
|
||
// Root > .L analyse2.C
|
||
// Root > analyse2 t
|
||
// Root > t.GetEntry(12); // Fill t data members with entry number 12
|
||
// Root > t.Show(); // Show values of entry 12
|
||
// Root > t.Show(16); // Read and show values of entry 16
|
||
// Root > t.Loop(); // Loop on all entries
|
||
//
|
||
|
||
// This is the loop skeleton where:
|
||
// jentry is the global entry number in the chain
|
||
// ientry is the entry number in the current Tree
|
||
// Note that the argument to GetEntry must be:
|
||
// jentry for TChain::GetEntry
|
||
// ientry for TTree::GetEntry and TBranch::GetEntry
|
||
//
|
||
// To read only selected branches, Insert statements like:
|
||
// METHOD1:
|
||
// fChain->ve types of modulesSetBranchStatus("*",0); // disable all branches
|
||
// fChain->SetBranchStatus("branchname",1); // activate branchname
|
||
// METHOD2: replace line
|
||
// fChain->GetEntry(jentry); //read all branches
|
||
//by b_branchname->GetEntry(ientry); //read only this branch
|
||
if (fChain == 0) return;
|
||
|
||
Double_t totalcurrent = 0.;
|
||
Double_t totaltime = 0.;
|
||
const int length = 100;
|
||
double array[length] = {0.};
|
||
double arrayavg = 0.;
|
||
TF1 * bkgfunc = new TF1("bkgfunc","[0]+[1]*TMath::Cos(x*[2]*(2*3.14159)+[3])");
|
||
bkgfunc->SetParameters( bkgfitPar0[64], bkgfitPar1[64], bkgfitPar2[64], bkgfitPar3[64]);
|
||
TF1 * gausfunc = new TF1("gausfunc","gaus(0)+[3]");
|
||
TF1 * gausfunc2 = new TF1("gausfunc2","gaus(0)+[3]");
|
||
|
||
// TF1 * gausfunc2 = new TF1("gausfunc2","[0]*exp(-((x-[1])/[2])^2) +[3]*exp(-((x-[1])/[4])^2) + [5]");
|
||
TGraphErrors * gausgraph;
|
||
|
||
int numoverthresh=0;
|
||
double maxchannelamp = 0.;
|
||
double threshold = 10.;
|
||
int maxchannel = 0;
|
||
int numtocalc = 0;
|
||
int sidenumtocalc= 0;
|
||
Long64_t nentries = fChain->GetEntries();
|
||
Long64_t ientry = LoadTree(1);
|
||
fChain->GetEntry(1);
|
||
Double_t basetimeoffset = time;
|
||
Double_t channelamp[128] = {0.};
|
||
Double_t abschannelamp[128] = {0.};
|
||
Double_t channelamp2[128] = {0.};
|
||
Double_t abschannelamp2[128] = {0.};
|
||
|
||
Bool_t beamonflag = false;
|
||
Int_t waitcounter = 0;
|
||
Int_t lastfit = 0;
|
||
Int_t lastfit2 = 0;
|
||
Double_t channellist_gsl[128];
|
||
Double_t channellist_gsl2[128];
|
||
|
||
Long64_t nbytes = 0, nb = 0;
|
||
for (Long64_t jentry=0; jentry<nentries;jentry++) {
|
||
Long64_t ientry = LoadTree(jentry);
|
||
if (ientry < 0) break;
|
||
nb = fChain->GetEntry(jentry); nbytes += nb;
|
||
// if (Cut(ientry) < 0) continue;
|
||
time_1 = time-basetimeoffset;
|
||
ic1_1 = ic1;
|
||
ic2_1 = ic2;
|
||
mw1_focusx_1 = mw1_focusx;
|
||
mw1_focusy_1 = mw1_focusy;
|
||
mw2_focusx_1 = mw2_focusx;
|
||
mw2_focusy_1 = mw2_focusy;
|
||
mw1_posx_1 = mw1_posx;
|
||
mw1_posy_1 = mw1_posy;
|
||
mw2_posx_1 = mw2_posx;
|
||
mw2_posy_1= mw2_posy;
|
||
eventid_1 = jentry;
|
||
if (jentry % 1000 ==0) cout << jentry << " events completed..." << endl;
|
||
|
||
//calculate a rolling average of the signal
|
||
arrayavg = 0;
|
||
|
||
for (int i = 1; i<length;i++){
|
||
array[i-1] = array[i];
|
||
}
|
||
if(ic1_1>-100) array[length-1] = ic1_1 ;
|
||
|
||
for (int i = 0; i<length;i++){
|
||
arrayavg += array[i]/double(length);
|
||
}
|
||
rollingavg = double(arrayavg);
|
||
// cout << rollingavg << endl;
|
||
|
||
//rerun the baseline fitter using the data in front of each spill
|
||
if(rollingavg>0.5 && !beamonflag && jentry>5000) {
|
||
beamonflag = true; beamon = 1;
|
||
cout << "Beam On: " << jentry << endl;
|
||
|
||
Baseline(true,1800,int(jentry-2000),true);
|
||
// bkgfunc->SetParameters( bkgfitPar0[128], bkgfitPar1[128], bkgfitPar2[128], bkgfitPar3[128]);
|
||
|
||
}
|
||
if(rollingavg <0.25 && beamonflag && jentry>5000 )
|
||
{
|
||
beamonflag = false;
|
||
beamon = 0;
|
||
}
|
||
|
||
|
||
|
||
if (ic1_1>0.01) {totaltime+=0.100; totalcurrent+=ic1_1;}
|
||
for (int ch = 4; ch < 128; ch++){
|
||
bkgfunc->SetParameters( bkgfitPar0[ch], bkgfitPar1[ch], bkgfitPar2[ch], bkgfitPar3[ch]); //set the parameters for the common mode subtraction
|
||
channelamp[ch] = channels[ch]- baseline[ch] - bkgfunc->Eval(time_1); //subtract the baseline
|
||
if (beamon==1&&ic1_1>0.01) th2d_beamSignal_channel->Fill(ch,channelamp[ch]);
|
||
if (beamon==0&&ic1_1<=0.01) th2d_bkg_channel->Fill(ch,channelamp[ch]);
|
||
|
||
}
|
||
// calculate mean and integral
|
||
beamSignal_1 = 0.;
|
||
numoverthresh=0;
|
||
maxchannelamp = 0.;
|
||
threshold = 20.;
|
||
maxchannel = 0;
|
||
// cout << (time_1-basetimeoffset)<< endl;
|
||
for (int ch = 4; ch < 64; ch++){
|
||
// bkgfunc->SetParameters( bkgfitPar0[ch], bkgfitPar1[ch], bkgfitPar2[ch], bkgfitPar3[ch]); //set the parameters for the common mode subtraction
|
||
// channelamp[ch] = channels[ch]- baseline[ch] - bkgfunc->Eval(time_1); //subtract the baseline
|
||
//channelamp_smooth[ch] = channelamp[ch];//to be smoothed later
|
||
if (channelamp[ch] < 0.) {abschannelamp[ch] = 0.;}
|
||
else {abschannelamp[ch] = channelamp[ch];}
|
||
|
||
if (ic1_1>0.01) th2d_beamSignal_channel->Fill(ch,channelamp[ch]);
|
||
if (ic1_1<=0.01) th2d_bkg_channel->Fill(ch,channelamp[ch]);
|
||
|
||
if ( channelamp[ch] >threshold) {
|
||
numoverthresh++;
|
||
if ( channelamp[ch] > maxchannelamp) {
|
||
maxchannelamp = channelamp[ch] ;
|
||
maxchannel = ch;
|
||
}
|
||
}
|
||
channellist_gsl[ch] = 0;
|
||
channelamp_smooth[ch] = 0.;
|
||
}
|
||
numoverthresh+=4;
|
||
numtocalc = 0;
|
||
sidenumtocalc = 0;
|
||
for (int ch = maxchannel-numoverthresh/2 ; ch < maxchannel + numoverthresh/2; ch++){
|
||
if (ch>=4 && ch<=63){
|
||
beamSignal_1 += channelamp[ch]; //integrate the signal around the peak channel
|
||
channelamp_smooth[numtocalc] =channelamp[ch] ;
|
||
channellist_gsl[numtocalc] = ch;
|
||
numtocalc++;
|
||
}
|
||
}
|
||
beamSidebandNoise_1 = 0.;
|
||
for (int ch = 4; ch < maxchannel-numoverthresh/2; ch++){
|
||
if (ch>=4 && ch<=63){
|
||
beamSidebandNoise_1 += channelamp[ch]; //integrate the noise outside the peak
|
||
sidenumtocalc++;
|
||
}
|
||
}
|
||
for (int ch = maxchannel+numoverthresh/2; ch < 64; ch++){
|
||
if (ch>=4 && ch<=63){
|
||
beamSidebandNoise_1 += channelamp[ch]; //integrate the noise outside the peak
|
||
sidenumtocalc++;
|
||
}
|
||
}
|
||
beamSidebandNoise_1 = beamSidebandNoise_1 /double(sidenumtocalc)*double(numtocalc);
|
||
|
||
// if (ic1_1<=5 && ic2_1<=5 && jentry<1000) { cout << beamSignal_1 << " "<<(time_1)<<" " << bkgfunc->Eval((time_1)) << endl; }
|
||
// beamSignal_1 -= bkgfunc->Eval(time_1);
|
||
|
||
//statistical analysis of the beam position
|
||
// FFTsmoothing(channelamp_smooth);//Fourier transform smoothing
|
||
|
||
|
||
|
||
beamPosX_1 = gsl_stats_wmean(channelamp_smooth,1,channellist_gsl,1,numtocalc); //calculate the weighted mean
|
||
beamFocusX_1 = gsl_stats_wsd_with_fixed_mean(channelamp_smooth,1,channellist_gsl,1,numtocalc,beamPosX_1); //SD
|
||
beamSkewX_1 = gsl_stats_wskew_m_sd(channelamp_smooth,1,channellist_gsl,1,numtocalc,beamPosX_1,beamFocusX_1); //skewness (symmetry)
|
||
beamKurtX_1 = gsl_stats_wkurtosis_m_sd(channelamp_smooth,1,channellist_gsl,1,numtocalc,beamPosX_1,beamFocusX_1); //excess kurtosis (well behaved tails)
|
||
beamNumX_1 = numtocalc;
|
||
beamFocusX_1 *=2.3548;//SD-->FWHM
|
||
|
||
|
||
if (ic1_1>0.01 && beamSignal_1>5) th2d_mw1_beamPosX->Fill(mw1_posx_1,beamPosX_1);
|
||
if (ic1_1>0.01 && beamSignal_1>5) th2d_ic1_beamSignal->Fill(ic1_1,beamSignal_1);
|
||
if (ic1_1>0.01 && beamSignal_1>5) th1d_beamSignal_ic1ratio->Fill(beamSignal_1/ic1_1);
|
||
|
||
|
||
//fit with a gaussian function;
|
||
if (beamon==1&&ic1_1>0.05){
|
||
if (numtocalc>10&&numtocalc<50){
|
||
gausfunc->SetParameters(beamSignal_1/(sqrt(2)*beamFocusX_1/2.3548),beamPosX_1,beamFocusX_1/2.3548,0.);
|
||
gausfunc2->SetParameters(beamSignal_1/(sqrt(2)*beamFocusX_1/2.3548),128-beamPosX_1,beamFocusX_1/2.3548,0.);
|
||
|
||
}
|
||
else{
|
||
gausfunc->SetParameters(500.,32.,10.,0.);
|
||
gausfunc2->SetParameters(500.,92.,10.,0.);
|
||
}
|
||
|
||
|
||
gausfunc->SetParLimits(0,0.,10000.);
|
||
gausfunc->SetParLimits(1,10.,50.);
|
||
gausfunc->SetParLimits(2,0.5,30.);
|
||
gausfunc->SetParLimits(3,-150.,150.);
|
||
|
||
gausfunc2->SetParLimits(0,0.,10000.);
|
||
gausfunc2->SetParLimits(1,64,124);
|
||
gausfunc2->SetParLimits(2,0.5,30.);
|
||
gausfunc2->SetParLimits(3,-150.,150.);
|
||
|
||
gausgraph = new TGraphErrors(128,channellist,channelamp,errorx,errory);
|
||
lastfit = gausgraph->Fit(gausfunc,"QRN","",4,60); // single gaussian fit
|
||
lastfit2 = gausgraph->Fit(gausfunc2,"QRN","",68,124);// second peak
|
||
|
||
beamPosX_fit = gausfunc->GetParameter(1);
|
||
beamFocusX_fit =2.3548* gausfunc->GetParameter(2);
|
||
beamChi2_fit = gausfunc->GetChisquare()/gausfunc->GetNDF();
|
||
beamPeakX_fit = gausfunc->GetParameter(0);
|
||
|
||
beamPosX_fit2 = gausfunc2->GetParameter(1);
|
||
beamFocusX_fit2 =2.3548* gausfunc2->GetParameter(2);
|
||
beamChi2_fit2 = gausfunc2->GetChisquare()/gausfunc2->GetNDF();
|
||
beamPeakX_fit2 = gausfunc2->GetParameter(0);
|
||
|
||
for (int ch = 4; ch < 64; ch++){
|
||
th2d_fitdiff_channel->Fill(ch, double(channelamp[ch]-gausfunc->Eval(ch)));
|
||
}
|
||
for (int ch = 64; ch < 128; ch++){
|
||
th2d_fit2diff_channel->Fill(ch, double(channelamp[ch]-gausfunc2->Eval(ch)));
|
||
}
|
||
|
||
}
|
||
|
||
|
||
newdata->Fill();
|
||
|
||
}
|
||
TVectorD v(10);
|
||
v[0] = totalcurrent;
|
||
v[1] = totaltime;
|
||
v.Write("icinfo");
|
||
th2d_mw1_beamPosX->Write();
|
||
th2d_ic1_beamSignal->Write();
|
||
th1d_beamSignal_ic1ratio->Write();
|
||
th2d_beamSignal_channel->Write();
|
||
th2d_bkg_channel->Write();
|
||
th2d_fitdiff_channel->Write();
|
||
th2d_fit2diff_channel->Write();
|
||
newdata->Write();
|
||
}
|
||
|
||
|
||
int main(int argc, char **argv)
|
||
{
|
||
// Working directories
|
||
const char *dirname = "/work/leverington/beamprofilemonitor/hitdata/HIT_01-12-2016/with_timestamp/";
|
||
const char *pin_dirname = "/work/leverington/beamprofilemonitor/hitdata/HIT_01-12-2016/with_timestamp/pin/";
|
||
const char *ext = ".root";
|
||
TSystemDirectory pin_dir(pin_dirname, pin_dirname);
|
||
|
||
if (true)
|
||
{
|
||
TSystemFile* file;
|
||
TString fname = argv[1];
|
||
|
||
|
||
|
||
// fname = file->GetName();
|
||
|
||
// execute single PiN_run***.root
|
||
if ( fname.EndsWith(ext) && !fname.BeginsWith("SAVE") && fname.BeginsWith("PiN_run"))
|
||
{
|
||
analyse2 *mon = new analyse2();
|
||
printf("File name: %s \n", fname.Data());
|
||
|
||
// Main part
|
||
// Initialize(DIRName, FileName, baselineEvents, prelimEvents, beamLevel, firstFibermat, readOutFrequency in Hz, integrationTime in us)
|
||
mon->Initialize(dirname, fname.Data(), 3200, 10000, 1., true, 1000., 0.);
|
||
mon->Baseline(true,1000,1,true);
|
||
mon->Loop(); //analysis loop
|
||
|
||
// cout << th2d_mw1_beamPosX->GetCorrelationFactor() << endl;
|
||
mon->Save();//save output tree file
|
||
// mon->Close();//close output tree file
|
||
|
||
delete mon;
|
||
|
||
}
|
||
|
||
}
|
||
return 0;
|
||
}
|