hit_analyse_v2/Scripts_20161201/analyse2.c
Blake Leverington 6f25f8675f fixed folders
2021-01-25 12:58:41 +01:00

325 lines
11 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#define analyse2_cxx
#include "analyse2.h"
#include <TH2.h>
#include <TStyle.h>
#include <TCanvas.h>
#include <string.h>
#include <stdio.h>
#include <iostream>
#include <vector>
#include <utility>
#include <TFile.h>
#include <TTree.h>
#include <TSystemDirectory.h>
#include <gsl/gsl_statistics.h>
#include <math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_fft_complex.h>
#include <TF1.h>
#include <TGraphErrors.h>
using namespace std;
void analyse2::Loop()
{
// In a ROOT session, you can do:
// Root > .L analyse2.C
// Root > analyse2 t
// Root > t.GetEntry(12); // Fill t data members with entry number 12
// Root > t.Show(); // Show values of entry 12
// Root > t.Show(16); // Read and show values of entry 16
// Root > t.Loop(); // Loop on all entries
//
// This is the loop skeleton where:
// jentry is the global entry number in the chain
// ientry is the entry number in the current Tree
// Note that the argument to GetEntry must be:
// jentry for TChain::GetEntry
// ientry for TTree::GetEntry and TBranch::GetEntry
//
// To read only selected branches, Insert statements like:
// METHOD1:
// fChain-> ve types of modulesSetBranchStatus("*",0); // disable all branches
// fChain->SetBranchStatus("branchname",1); // activate branchname
// METHOD2: replace line
// fChain->GetEntry(jentry); //read all branches
//by b_branchname->GetEntry(ientry); //read only this branch
if (fChain == 0) return;
Double_t totalcurrent = 0.;
Double_t totaltime = 0.;
const int length = 100;
double array[length] = {0.};
double arrayavg = 0.;
TF1 * bkgfunc = new TF1("bkgfunc","[0]+[1]*TMath::Cos(x*[2]*(2*3.14159)+[3])");
bkgfunc->SetParameters( bkgfitPar0[64], bkgfitPar1[64], bkgfitPar2[64], bkgfitPar3[64]);
TF1 * gausfunc = new TF1("gausfunc","gaus(0)+[3]");
TF1 * gausfunc2 = new TF1("gausfunc2","gaus(0)+[3]");
// TF1 * gausfunc2 = new TF1("gausfunc2","[0]*exp(-((x-[1])/[2])^2) +[3]*exp(-((x-[1])/[4])^2) + [5]");
TGraphErrors * gausgraph;
int numoverthresh=0;
double maxchannelamp = 0.;
double threshold = 10.;
int maxchannel = 0;
int numtocalc = 0;
int sidenumtocalc= 0;
Long64_t nentries = fChain->GetEntries();
Long64_t ientry = LoadTree(1);
fChain->GetEntry(1);
Double_t basetimeoffset = time;
Double_t channelamp[128] = {0.};
Double_t abschannelamp[128] = {0.};
Double_t channelamp2[128] = {0.};
Double_t abschannelamp2[128] = {0.};
Bool_t beamonflag = false;
Int_t waitcounter = 0;
Int_t lastfit = 0;
Int_t lastfit2 = 0;
Double_t channellist_gsl[128];
Double_t channellist_gsl2[128];
Long64_t nbytes = 0, nb = 0;
for (Long64_t jentry=0; jentry<nentries;jentry++) {
Long64_t ientry = LoadTree(jentry);
if (ientry < 0) break;
nb = fChain->GetEntry(jentry); nbytes += nb;
// if (Cut(ientry) < 0) continue;
time_1 = time-basetimeoffset;
ic1_1 = ic1;
ic2_1 = ic2;
mw1_focusx_1 = mw1_focusx;
mw1_focusy_1 = mw1_focusy;
mw2_focusx_1 = mw2_focusx;
mw2_focusy_1 = mw2_focusy;
mw1_posx_1 = mw1_posx;
mw1_posy_1 = mw1_posy;
mw2_posx_1 = mw2_posx;
mw2_posy_1= mw2_posy;
eventid_1 = jentry;
if (jentry % 1000 ==0) cout << jentry << " events completed..." << endl;
//calculate a rolling average of the signal
arrayavg = 0;
for (int i = 1; i<length;i++){
array[i-1] = array[i];
}
if(ic1_1>-100) array[length-1] = ic1_1 ;
for (int i = 0; i<length;i++){
arrayavg += array[i]/double(length);
}
rollingavg = double(arrayavg);
// cout << rollingavg << endl;
//rerun the baseline fitter using the data in front of each spill
if(rollingavg>0.5 && !beamonflag && jentry>5000) {
beamonflag = true; beamon = 1;
cout << "Beam On: " << jentry << endl;
Baseline(true,1800,int(jentry-2000),true);
// bkgfunc->SetParameters( bkgfitPar0[128], bkgfitPar1[128], bkgfitPar2[128], bkgfitPar3[128]);
}
if(rollingavg <0.25 && beamonflag && jentry>5000 )
{
beamonflag = false;
beamon = 0;
}
if (ic1_1>0.01) {totaltime+=0.100; totalcurrent+=ic1_1;}
for (int ch = 4; ch < 128; ch++){
bkgfunc->SetParameters( bkgfitPar0[ch], bkgfitPar1[ch], bkgfitPar2[ch], bkgfitPar3[ch]); //set the parameters for the common mode subtraction
channelamp[ch] = channels[ch]- baseline[ch] - bkgfunc->Eval(time_1); //subtract the baseline
if (beamon==1&&ic1_1>0.01) th2d_beamSignal_channel->Fill(ch,channelamp[ch]);
if (beamon==0&&ic1_1<=0.01) th2d_bkg_channel->Fill(ch,channelamp[ch]);
}
// calculate mean and integral
beamSignal_1 = 0.;
numoverthresh=0;
maxchannelamp = 0.;
threshold = 20.;
maxchannel = 0;
// cout << (time_1-basetimeoffset)<< endl;
for (int ch = 4; ch < 64; ch++){
// bkgfunc->SetParameters( bkgfitPar0[ch], bkgfitPar1[ch], bkgfitPar2[ch], bkgfitPar3[ch]); //set the parameters for the common mode subtraction
// channelamp[ch] = channels[ch]- baseline[ch] - bkgfunc->Eval(time_1); //subtract the baseline
//channelamp_smooth[ch] = channelamp[ch];//to be smoothed later
if (channelamp[ch] < 0.) {abschannelamp[ch] = 0.;}
else {abschannelamp[ch] = channelamp[ch];}
if (ic1_1>0.01) th2d_beamSignal_channel->Fill(ch,channelamp[ch]);
if (ic1_1<=0.01) th2d_bkg_channel->Fill(ch,channelamp[ch]);
if ( channelamp[ch] >threshold) {
numoverthresh++;
if ( channelamp[ch] > maxchannelamp) {
maxchannelamp = channelamp[ch] ;
maxchannel = ch;
}
}
channellist_gsl[ch] = 0;
channelamp_smooth[ch] = 0.;
}
numoverthresh+=4;
numtocalc = 0;
sidenumtocalc = 0;
for (int ch = maxchannel-numoverthresh/2 ; ch < maxchannel + numoverthresh/2; ch++){
if (ch>=4 && ch<=63){
beamSignal_1 += channelamp[ch]; //integrate the signal around the peak channel
channelamp_smooth[numtocalc] =channelamp[ch] ;
channellist_gsl[numtocalc] = ch;
numtocalc++;
}
}
beamSidebandNoise_1 = 0.;
for (int ch = 4; ch < maxchannel-numoverthresh/2; ch++){
if (ch>=4 && ch<=63){
beamSidebandNoise_1 += channelamp[ch]; //integrate the noise outside the peak
sidenumtocalc++;
}
}
for (int ch = maxchannel+numoverthresh/2; ch < 64; ch++){
if (ch>=4 && ch<=63){
beamSidebandNoise_1 += channelamp[ch]; //integrate the noise outside the peak
sidenumtocalc++;
}
}
beamSidebandNoise_1 = beamSidebandNoise_1 /double(sidenumtocalc)*double(numtocalc);
// if (ic1_1<=5 && ic2_1<=5 && jentry<1000) { cout << beamSignal_1 << " "<<(time_1)<<" " << bkgfunc->Eval((time_1)) << endl; }
// beamSignal_1 -= bkgfunc->Eval(time_1);
//statistical analysis of the beam position
// FFTsmoothing(channelamp_smooth);//Fourier transform smoothing
beamPosX_1 = gsl_stats_wmean(channelamp_smooth,1,channellist_gsl,1,numtocalc); //calculate the weighted mean
beamFocusX_1 = gsl_stats_wsd_with_fixed_mean(channelamp_smooth,1,channellist_gsl,1,numtocalc,beamPosX_1); //SD
beamSkewX_1 = gsl_stats_wskew_m_sd(channelamp_smooth,1,channellist_gsl,1,numtocalc,beamPosX_1,beamFocusX_1); //skewness (symmetry)
beamKurtX_1 = gsl_stats_wkurtosis_m_sd(channelamp_smooth,1,channellist_gsl,1,numtocalc,beamPosX_1,beamFocusX_1); //excess kurtosis (well behaved tails)
beamNumX_1 = numtocalc;
beamFocusX_1 *=2.3548;//SD-->FWHM
if (ic1_1>0.01 && beamSignal_1>5) th2d_mw1_beamPosX->Fill(mw1_posx_1,beamPosX_1);
if (ic1_1>0.01 && beamSignal_1>5) th2d_ic1_beamSignal->Fill(ic1_1,beamSignal_1);
if (ic1_1>0.01 && beamSignal_1>5) th1d_beamSignal_ic1ratio->Fill(beamSignal_1/ic1_1);
//fit with a gaussian function;
if (beamon==1&&ic1_1>0.05){
if (numtocalc>10&&numtocalc<50){
gausfunc->SetParameters(beamSignal_1/(sqrt(2)*beamFocusX_1/2.3548),beamPosX_1,beamFocusX_1/2.3548,0.);
gausfunc2->SetParameters(beamSignal_1/(sqrt(2)*beamFocusX_1/2.3548),128-beamPosX_1,beamFocusX_1/2.3548,0.);
}
else{
gausfunc->SetParameters(500.,32.,10.,0.);
gausfunc2->SetParameters(500.,92.,10.,0.);
}
gausfunc->SetParLimits(0,0.,10000.);
gausfunc->SetParLimits(1,10.,50.);
gausfunc->SetParLimits(2,0.5,30.);
gausfunc->SetParLimits(3,-150.,150.);
gausfunc2->SetParLimits(0,0.,10000.);
gausfunc2->SetParLimits(1,64,124);
gausfunc2->SetParLimits(2,0.5,30.);
gausfunc2->SetParLimits(3,-150.,150.);
gausgraph = new TGraphErrors(128,channellist,channelamp,errorx,errory);
lastfit = gausgraph->Fit(gausfunc,"QRN","",4,60); // single gaussian fit
lastfit2 = gausgraph->Fit(gausfunc2,"QRN","",68,124);// second peak
beamPosX_fit = gausfunc->GetParameter(1);
beamFocusX_fit =2.3548* gausfunc->GetParameter(2);
beamChi2_fit = gausfunc->GetChisquare()/gausfunc->GetNDF();
beamPeakX_fit = gausfunc->GetParameter(0);
beamPosX_fit2 = gausfunc2->GetParameter(1);
beamFocusX_fit2 =2.3548* gausfunc2->GetParameter(2);
beamChi2_fit2 = gausfunc2->GetChisquare()/gausfunc2->GetNDF();
beamPeakX_fit2 = gausfunc2->GetParameter(0);
for (int ch = 4; ch < 64; ch++){
th2d_fitdiff_channel->Fill(ch, double(channelamp[ch]-gausfunc->Eval(ch)));
}
for (int ch = 64; ch < 128; ch++){
th2d_fit2diff_channel->Fill(ch, double(channelamp[ch]-gausfunc2->Eval(ch)));
}
}
newdata->Fill();
}
TVectorD v(10);
v[0] = totalcurrent;
v[1] = totaltime;
v.Write("icinfo");
th2d_mw1_beamPosX->Write();
th2d_ic1_beamSignal->Write();
th1d_beamSignal_ic1ratio->Write();
th2d_beamSignal_channel->Write();
th2d_bkg_channel->Write();
th2d_fitdiff_channel->Write();
th2d_fit2diff_channel->Write();
newdata->Write();
}
int main(int argc, char **argv)
{
// Working directories
const char *dirname = "/work/leverington/beamprofilemonitor/hitdata/HIT_01-12-2016/with_timestamp/";
const char *pin_dirname = "/work/leverington/beamprofilemonitor/hitdata/HIT_01-12-2016/with_timestamp/pin/";
const char *ext = ".root";
TSystemDirectory pin_dir(pin_dirname, pin_dirname);
if (true)
{
TSystemFile* file;
TString fname = argv[1];
// fname = file->GetName();
// execute single PiN_run***.root
if ( fname.EndsWith(ext) && !fname.BeginsWith("SAVE") && fname.BeginsWith("PiN_run"))
{
analyse2 *mon = new analyse2();
printf("File name: %s \n", fname.Data());
// Main part
// Initialize(DIRName, FileName, baselineEvents, prelimEvents, beamLevel, firstFibermat, readOutFrequency in Hz, integrationTime in us)
mon->Initialize(dirname, fname.Data(), 3200, 10000, 1., true, 1000., 0.);
mon->Baseline(true,1000,1,true);
mon->Loop(); //analysis loop
// cout << th2d_mw1_beamPosX->GetCorrelationFactor() << endl;
mon->Save();//save output tree file
// mon->Close();//close output tree file
delete mon;
}
}
return 0;
}