data analysis scripts
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

259 lines
7.5 KiB

#define hit_analyse_cxx
#include "hit_analyse.h"
int main(int argc, char **argv){
opendatafiles(argc, argv);
histograms(argc, argv);
analyse(argc, argv);
closedatafiles();
return 0;
}
int opendatafiles(int argc, char ** argv){
if (argc>2){
//open bpm data file
filename = Form("%s%s.dat",argv[1],argv[2]);
file.open(filename, ifstream::in | ifstream::binary);
fileframesize = getFileSize(filename) / ( 4*sizeof(BufferData) );
if (fileframesize>0){ std::cout << "Number of frames in data file: " << fileframesize << std::endl;}
else { std:cout << "BPM .dat dile not found." << endl; return -1;}
//bpm data timestamps
timestampfilename = Form("%s%s_timestamp.csv",argv[1],argv[2]);
timestampfile.open(timestampfilename, ifstream::in);
if (!timestampfile.is_open()){
printf("timestamp.csv did not open.\n");
ethercat = false;
//return -1; //file could not be opened
}
//open ethercat file
if (argc>3){
ethercatfile = argv[3];
tree2 = new TTree("t2", "t2");
std::cout << " Loading Ethercat data." << std::endl;
tree2->ReadFile(ethercatfile, "RELTIME2/D:IC1/D:MW1_POSX/D:MW1_POSY/D:ANALOG_IN1/D:ENERGY_INDEX/D:INTENSITY_INDEX/D:ION-SORT/D:TIME2/D", '\t');
std::cout << "Ethercat data loaded." << std::endl;
tree2->Print();
}
//open amplitude offset correction file
if (argc>4){
offsetfilename = Form("%s",argv[4]);
offsetfile.open(offsetfilename, ifstream::in);
if (!offsetfile.is_open()){
printf("no offset.txt file found\n");
// return -1; //file could not be opened
}
}
dataptr = new BufferData();
return 1;
}
int closedatafiles(int argc, char ** argv){
if (file.is_open()) file.close();
if (timestampfile.is_open()) timestampfile.close();
if (offsetfile.is_open()) offsetfile.close();
rootFile->Write();
rootFile->Close();
}
int analyse(int argc, char **argv)
{
int bkg_frames = 1000;
set_background_v1(bkg_frames);
for (int frame = 0; frame< fileframesize - bkg_frames; frame++ ){
if (frame%10000==0) std::cout << "Frame: " << frame << " (" <<double(frame)/double(fileframesize)*100.0 << "%)" << std::endl;
//must read all boards to keep read correct position in data file
for (int boardnumber = 0; boardnumber<4;boardnumber++){
board_b[boardnumber] = readboard(frame, boardnumber); //read in the frame
BPMbeamrecon[boardnumber] = beamreconstruction(board_b[boardnumber], 50.); // do the linear regression fit of the beam;
}
}
return 1;
}
bpm_frame_v1 readboard(int frame, int boardnumber){
bpm_frame_v1 board;
board.integratedsignalamp = 0.;
file.seekg(boardnumber*sizeof(BufferData)+4*frame*sizeof(BufferData));
file.read ((char*)dataptr ,sizeof(BufferData));
if (dataptr->sync_frame.device_nr==boardnumber){
for (int j = 1; j<128;j++){
//subtract the background from the data
board.channel_amp[j] = dataptr->sensor_data[j] - board_b_bkg[boardnumber].channel_amp[j];
// std::cout << j << " " << board.channel_amp[j] << " " << dataptr->sensor_data[j] << std::endl;
//sum the signal across channels
board.integratedsignalamp += board.channel_amp[j];
//find the peak channel
if (board.channel_amp[j]> board.maxchannel_amp) {
board.maxchannel = j;
board.maxchannel_amp = board.channel_amp[j];
// cout << maxchannel_b0 << " " <<maxchannelamp_b0 << endl;
}
}
}
else std::cerr << "Error reading board data." << std::endl;
return board;
}
void histograms(){
//open output root file
rootfilename = Form("%s/root/%s.root",argv[1],argv[2]);
rootFile = new TFile(rootfilename,"RECREATE");
if ( rootFile->IsOpen() ) printf("ROOT file opened successfully\n");
}
else return -1;
TTree *rootTree = new TTree("t","HIT Data Root Tree");
}
void set_background_v1(int max_frames){
for (int j = 0; j<128; j++){
for (int k = 0; k<4; k++){
board_b_bkg[k].channel_amp[j] = 0.;
}
}
for (int i = 0;i<max_frames;i++){
//must read all boards to keep read correct position in data file
for (int boardnumber = 0; boardnumber<4; boardnumber++){
file.seekg(boardnumber*sizeof(BufferData)+4*i*sizeof(BufferData));
file.read ((char*)dataptr ,sizeof(BufferData));
if (dataptr->sync_frame.device_nr==boardnumber){
for (int j = 1; j<128;j++){
board_b_bkg[boardnumber].channel_amp[j] += double(dataptr->sensor_data[j]) / double(max_frames);
// std::cout << j << " " << board.channel_amp[j] << " " << dataptr->sensor_data[j] << std::endl;
}
}
else std::cerr << "Error reading board data." << std::endl;
}
}
}
beamRecon beamreconstruction(bpm_frame_v1 frametoanalyse, double threshold = 50.){
///////////////// linear regression using Integration by parts of gaussian function.
beamRecon beam;
double SumT, SumS, SumS2, SumST, SumT2, SumY, SumYS, SumYT, sigmaABC, muABC,p,c, b, b_den, b_num, SumYYP, SumYYM, MeanY;
TMatrixD M1(3,3);
TMatrixD M1inv(3,3);
TVectorD ABC(3);
TVectorD M2(3);
vector<double> signal_list;
vector<double> channel_list;
SumY = 0.;
SumS = 0.;
SumT = 0.;
SumS2 = 0.;
SumST = 0.;
SumT2 = 0.;
SumYS = 0.;
SumYT = 0.;
b_den = 0.;
b_num = 0.;
b = 0.;
p = 0.;
c = 0.;
SumYYM = 0.;
SumYYP = 0.;
MeanY = 0.;
// const int array_length = sizeof(frametoanalyse.channel_amp)/sizeof(double);
const int array_length = 128;
for (int i = 0; i< array_length; i++){
if (frametoanalyse.channel_amp[i]>=threshold) {
signal_list.push_back(frametoanalyse.channel_amp[i]);
channel_list.push_back(i);//correct for actual detector position
}
}
const int vector_length = channel_list.size();
if (vector_length<=3) return beam;
double S[vector_length];
double T[vector_length];
for(int k=0; k<vector_length;k++){
if (k==0){
S[k]=0.; T[k]=0.;
}
else{
S[k] = S[k-1]+0.5*( signal_list[k] + signal_list[k-1] ) * ( channel_list[k] - channel_list[k-1] );
T[k] = T[k-1]+0.5*( channel_list[k] * signal_list[k] + channel_list[k-1] * signal_list[k-1] ) * ( channel_list[k] - channel_list[k-1] );
}
// cout << S[k] << " " << T[k] << endl;
SumS += S[k]; SumT += T[k];
SumY += signal_list[k];
SumS2 += S[k]*S[k]; SumST += S[k]*T[k]; SumT2 += T[k]*T[k];
SumYS += signal_list[k]*S[k];
SumYT += signal_list[k]*T[k];
MeanY+=signal_list[k];
}
MeanY/=vector_length;
M1(0,0) = SumT2; M1(0,1) = SumST; M1(0,2) = SumT; M1(1,0) = SumST; M1(1,1) = SumS2;
M1(1,2) = SumS; M1(2,0) = SumT; M1(2,1) = SumS;
M1(2,2) = vector_length;
M2(0) = SumYT; M2(1) = SumYS; M2(2) = SumY;
M1inv = M1.Invert(); ABC = M1inv * M2;
//calculate b,p,c ---> y = b*exp(-p*(x-c)*(x-c))
p = -ABC(0)/2.; c = -ABC(1)/ABC(0);
for(int k=0; k<vector_length;k++){
b_num += exp(-p*(channel_list[k]-c)*(channel_list[k]-c)) * signal_list[k];
b_den += exp(-2*p*(channel_list[k]-c)*(channel_list[k]-c));
}
b = b_num/b_den;
beam.Position = -ABC(1)/ ABC(0);
beam.Focus = 2.3548/sqrt(2*p);
beam.Peak = b;
beam.Rsqr = SumYYP/SumYYM;
beam.Skew = gsl_stats_wskew_m_sd(&signal_list[0],1,&channel_list[0],1,vector_length,beam.Position,beam.Focus/2.3548); //skewness (symmetry)
beam.Kurtosis = gsl_stats_wkurtosis_m_sd(&signal_list[0],1,&channel_list[0],1,vector_length,beam.Position,beam.Focus/2.3548); //excess kurtosis (well behaved tails)
return beam;
}