data analysis scripts
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

1186 lines
44 KiB

/// to do:
/// 1. correct for gap between arrays
#define convert2_cxx
#include "hitutils.h"
#include <string>
#include <stdio.h>
#include <iostream>
#include <vector>
#include <utility>
#include <TH2.h>
#include <TStyle.h>
#include <TCanvas.h>
#include <TFile.h>
#include <TTree.h>
#include <TSystemDirectory.h>
#include <gsl/gsl_statistics.h>
#include <math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_fft_complex.h>
#include <TF1.h>
#include <TGraphErrors.h>
#include <gsl/gsl_sort.h>
#include <TVector.h>
#include "TStopwatch.h"
#include "Math/MinimizerOptions.h"
#include "TVirtualFitter.h"
using namespace std;
bool smooth_on = false;
bool doFit = false;
int eventID = 0;
int framestart=0;
int frameend = 0;
double board_b0_ch[128];
double board_b1_ch[128];
double board_b2_ch[128];
double board_b3_ch[128];
double board_b0_ch_bkg[128];
double board_b1_ch_bkg[128];
double board_b2_ch_bkg[128];
double board_b3_ch_bkg[128];
double signal_b0 = 0.;
double signal_b1 = 0.;
double signal_b2 = 0.;
double signal_b3 = 0.;
double signal_b0_left = 0.;
double signal_b1_left = 0.;
double signal_b2_left = 0.;
double signal_b3_left = 0.;
double signal_b0_right = 0.;
double signal_b1_right = 0.;
double signal_b2_right = 0.;
double signal_b3_right = 0.;
double signal_gsl_b0[128];
double signal_gsl_b1[128];
double signal_gsl_b2[128];
double signal_gsl_b3[128];
double channellist_gsl_b0[128];
double channellist_gsl_b1[128];
double channellist_gsl_b2[128];
double channellist_gsl_b3[128];
double channellist[128];
double pos[128];
double maxchannelamp_b0 =0.;
double maxchannelamp_b1 =0.;
double maxchannelamp_b2 =0.;
double maxchannelamp_b3 =0.;
int maxchannel_b0 =0;
int maxchannel_b1 =0;
int maxchannel_b2 =0;
int maxchannel_b3 =0;
int numtocalc_b0 =0;
int numtocalc_b1 =0;
int numtocalc_b2 =0;
int numtocalc_b3 =0;
int nfwhm_b0 = 0;
int nfwhm_b1 = 0;
int nfwhm_b2 = 0;
int nfwhm_b3 = 0;
double beamPosX_b0,beamPosX_b1,beamPosX_b2,beamPosX_b3;
double beamFocusX_b0,beamFocusX_b1,beamFocusX_b2,beamFocusX_b3;
double beamPosX_fit_b0,beamPosX_fit_b1,beamPosX_fit_b2,beamPosX_fit_b3;
double beamFocusX_fit_b0,beamFocusX_fit_b1,beamFocusX_fit_b2,beamFocusX_fit_b3;
double beamSkewX_b0,beamSkewX_b1,beamSkewX_b2,beamSkewX_b3;
double beamKurtX_b0,beamKurtX_b1,beamKurtX_b2,beamKurtX_b3;
double beamNumX_b0,beamNumX_b1,beamNumX_b2,beamNumX_b3;
double beamSidebandNoise_b0, beamSidebandNoise_b1, beamSidebandNoise_b2, beamSidebandNoise_b3 ;
int sidenumtocalc_b0,sidenumtocalc_b1,sidenumtocalc_b2,sidenumtocalc_b3;
size_t size = 5;
vector<double> boxcar;
vector<double> boxcarsort;
vector<double> boxcarweight{1,3,5,3,1};
vector<double> data(128);
TVector sumvector_b0(128);
TVector sumvector_b1(128);
TVector sumvector_b2(128);
TVector sumvector_b3(128);
TVector * sumvector_b0_ptr = &sumvector_b0;
TVector * sumvector_b1_ptr = &sumvector_b1;
TVector * sumvector_b2_ptr = &sumvector_b2;
TVector * sumvector_b3_ptr = &sumvector_b3;
const int length = 100; //length of the rolling average
double array_b0[length][128] = {{0.}};
double array_b1[length][128] = {{0.}};
double array_b2[length][128] = {{0.}};
double array_b3[length][128] = {{0.}};
double arrayavg_b0[128] = {0.};
double arrayavg_b1[128] = {0.};
double arrayavg_b2[128] = {0.};
double arrayavg_b3[128] = {0.};
double board_b0_smooth_ch[128];
double board_b1_smooth_ch[128];
double board_b2_smooth_ch[128];
double board_b3_smooth_ch[128];
bool graphsaved_b0 = false;
bool graphsaved_b1 = false;
bool graphsaved_b2 = false;
bool graphsaved_b3 = false;
TVector beamontime(0,3,0.,0.,0.,0.,"END");
TVector * beamontime_ptr = &beamontime;
double calibration_b0[128] = {0.};
double calibration_b1[128] = {0.};
double calibration_b2[128] = {0.};
double calibration_b3[128] = {0.};
TF1 * gausfunc_b0 = new TF1("gausfunc_b0","gaus(0)+[3]");
TF1 * gausfunc_b1 = new TF1("gausfunc_b1","gaus(0)+[3]");
TGraphErrors * gausgraph_b0;
TGraphErrors * gausgraph_b1;
Int_t lastfit_b0 = 0;
Int_t lastfit_b1 = 0;
double errorx[128];
double errory[128];
/// compile with:
//// $ make clean; make
/// run with:
//// $ ./convert <path to data> <run>
//// $ ./convert /work/leverington/beamprofilemonitor/hitdata/HIT_17_12_2017/ run2
int analyse(int argc, char **argv)
{
TVirtualFitter::SetDefaultFitter("Minuit2");
TVirtualFitter::SetPrecision(0.01);
std::cout << "Default Fitter:" << TVirtualFitter::GetDefaultFitter() << std::endl;
//initialise some values;
for (int i = 0;i<128;i++){
board_b0_ch_bkg[i] = 0.;
board_b1_ch_bkg[i] = 0.;
board_b2_ch_bkg[i] = 0.;
board_b3_ch_bkg[i] = 0.;
channellist_gsl_b0[i] = 0;
channellist_gsl_b1[i] = 0;
channellist_gsl_b2[i] = 0;
channellist_gsl_b3[i] = 0;
sumvector_b0[i] = 0;
sumvector_b1[i] = 0;
sumvector_b2[i] = 0;
sumvector_b3[i] = 0;
calibration_b0[i] = 1.0;
calibration_b1[i] = 1.0;
calibration_b2[i] = 1.0;
calibration_b3[i] = 1.0;
errorx[i]=17.;
errory[i]=17.;
if (i<64) {pos[i] = double(i);}
else {pos[i] = double(i) + 0.2; }
}
if (argc > 1){
//open the file names specified in the command line
string ethercatfile = argv[3];
// argv[1]= "/work/leverington/beamprofilemonitor/hitdata/HIT_17_12_2017/";
// argv[2]= "Run11"
string filename = Form("%s%s.dat",argv[1],argv[2]);
string timestampfilename = Form("%s%s_timestamp.csv",argv[1],argv[2]);
string rootfilename = Form("%s/root/%s.root",argv[1],argv[2]); // Giulia needs to change the path %s/root/ of the written root file.
ifstream file(filename, ifstream::in | ifstream::binary);
ifstream timestampfile(timestampfilename, ifstream::in);
if (!file.is_open()){
printf(".dat did not open.\n");
return -1; //file could not be opened
}
if (!timestampfile.is_open()){
printf("timestamp.csv did not open.\n");
return -1; //file could not be opened
}
///some variables to get the data
// int number_of_records_to_read = 4*10;
// BufferData* buffer = new BufferData[number_of_records_to_read];
//if(argc > 4) {
// framestart = atoi(argv[3]);
// frameend = atoi(argv[4]);
// }
int board_b = -1;
long int fileframesize = getFileSize(filename.c_str()) / ( 4*sizeof(BufferData) );
BufferData* dataptr = new BufferData();
if (fileframesize>0){
std::cout << "Number of frames:" << fileframesize << std::endl;
//open ROOT file for saving histos and TTree.
TFile *rootFile = new TFile(rootfilename.c_str(),"RECREATE");
if ( rootFile->IsOpen() ) printf("ROOT file opened successfully\n");
TH2D * th2_signal_vs_channel_b0 = new TH2D("th2_signal_vs_channel_b0","th2_signal_vs_channel_b0",128,0,128,2200,-1000,10000);
TH2D * th2_signal_vs_channel_b1 = new TH2D("th2_signal_vs_channel_b1","th2_signal_vs_channel_b1",128,0,128,2200,-1000,10000);
TH2D * th2_signal_vs_channel_b2 = new TH2D("th2_signal_vs_channel_b2","th2_signal_vs_channel_b2",128,0,128,2200,-1000,10000);
TH2D * th2_signal_vs_channel_b3 = new TH2D("th2_signal_vs_channel_b3","th2_signal_vs_channel_b3",128,0,128,2200,-1000,10000);
TH2D * th2_signal_vs_channel_sub_b0 = new TH2D("th2_signal_vs_channel_sub_b0","th2_signal_vs_channel_sub_b0",128,0,128,2200,-1000,10000);
TH2D * th2_signal_vs_channel_sub_b1 = new TH2D("th2_signal_vs_channel_sub_b1","th2_signal_vs_channel_sub_b1",128,0,128,2200,-1000,10000);
TH2D * th2_signal_vs_channel_sub_b2 = new TH2D("th2_signal_vs_channel_sub_b2","th2_signal_vs_channel_sub_b2",128,0,128,2200,-1000,10000);
TH2D * th2_signal_vs_channel_sub_b3 = new TH2D("th2_signal_vs_channel_sub_b3","th2_signal_vs_channel_sub_b3",128,0,128,2200,-1000,10000);
TH1D * th1_signal_b0 = new TH1D("th1_signal_b0","th1_signal_b0",2200,-10000,50000);
TH1D * th1_signal_b1 = new TH1D("th1_signal_b1","th1_signal_b1",2200,-10000,50000);
TH1D * th1_signal_b2 = new TH1D("th1_signal_b2","th1_signal_b2",2200,-10000,50000);
TH1D * th1_signal_b3 = new TH1D("th1_signal_b3","th1_signal_b3",2200,-10000,50000);
TGraph * graph_bkg_b0 = new TGraph();
TGraph * graph_bkg_b1 = new TGraph();
TGraph * graph_bkg_b2 = new TGraph();
TGraph * graph_bkg_b3 = new TGraph();
TGraph * gr_b0;
TGraph * gr_sm_b0;
TGraph * gr_b1;
TGraph * gr_sm_b1;
TGraph * gr_b2;
TGraph * gr_sm_b2;
TGraph * gr_b3;
TGraph * gr_sm_b3;
TH2D * th2_signal_vs_channel_bkg_b0 = new TH2D("th2_signal_vs_channel_bkg_b0","th2_signal_vs_channel_bkg_b0",128,0,128,1000,-500,500);
TH2D * th2_signal_vs_channel_bkg_b1 = new TH2D("th2_signal_vs_channel_bkg_b1","th2_signal_vs_channel_bkg_b1",128,0,128,1000,-500,500);
TH2D * th2_signal_vs_channel_bkg_b2 = new TH2D("th2_signal_vs_channel_bkg_b2","th2_signal_vs_channel_bkg_b2",128,0,128,1000,-500,500);
TH2D * th2_signal_vs_channel_bkg_b3 = new TH2D("th2_signal_vs_channel_bkg_b3","th2_signal_vs_channel_bkg_b3",128,0,128,1000,-500,500);
TTree *rootTree = new TTree("t","HIT Data Root Tree");
rootTree->Branch("beamPosX_b0",&beamPosX_b0,"beamPosX_b0/D");
rootTree->Branch("beamPosX_b1",&beamPosX_b1,"beamPosX_b1/D");
rootTree->Branch("beamPosX_b2",&beamPosX_b2,"beamPosX_b2/D");
rootTree->Branch("beamPosX_b3",&beamPosX_b3,"beamPosX_b3/D");
rootTree->Branch("beamPosX_fit_b0",&beamPosX_fit_b0,"beamPosX_fit_b0/D");
rootTree->Branch("beamPosX_fit_b1",&beamPosX_fit_b1,"beamPosX_fit_b1/D");
rootTree->Branch("beamPosX_fit_b2",&beamPosX_fit_b2,"beamPosX_fit_b2/D");
rootTree->Branch("beamPosX_fit_b3",&beamPosX_fit_b3,"beamPosX_fit_b3/D");
rootTree->Branch("beamFocusX_b0",&beamFocusX_b0,"beamFocusX_b0/D");
rootTree->Branch("beamFocusX_b1",&beamFocusX_b1,"beamFocusX_b1/D");
rootTree->Branch("beamFocusX_b2",&beamFocusX_b2,"beamFocusX_b2/D");
rootTree->Branch("beamFocusX_b3",&beamFocusX_b3,"beamFocusX_b3/D");
rootTree->Branch("beamFocusX_fit_b0",&beamFocusX_fit_b0,"beamFocusX_fit_b0/D");
rootTree->Branch("beamFocusX_fit_b1",&beamFocusX_fit_b1,"beamFocusX_fit_b1/D");
rootTree->Branch("beamFocusX_fit_b2",&beamFocusX_fit_b2,"beamFocusX_fit_b2/D");
rootTree->Branch("beamFocusX_fit_b3",&beamFocusX_fit_b3,"beamFocusX_fit_b3/D");
rootTree->Branch("beamSkewX_b0",&beamSkewX_b0,"beamSkewX_b0/D");
rootTree->Branch("beamSkewX_b1",&beamSkewX_b1,"beamSkewX_b1/D");
rootTree->Branch("beamSkewX_b2",&beamSkewX_b2,"beamSkewX_b2/D");
rootTree->Branch("beamSkewX_b3",&beamSkewX_b3,"beamSkewX_b3/D");
rootTree->Branch("beamKurtX_b0",&beamKurtX_b0,"beamKurtX_b0/D");
rootTree->Branch("beamKurtX_b1",&beamKurtX_b1,"beamKurtX_b1/D");
rootTree->Branch("beamKurtX_b2",&beamKurtX_b2,"beamKurtX_b2/D");
rootTree->Branch("beamKurtX_b3",&beamKurtX_b3,"beamKurtX_b3/D");
rootTree->Branch("beamNumX_b0",&beamNumX_b0,"beamNumX_b0/D");
rootTree->Branch("beamNumX_b1",&beamNumX_b1,"beamNumX_b1/D");
rootTree->Branch("beamNumX_b2",&beamNumX_b2,"beamNumX_b2/D");
rootTree->Branch("beamNumX_b3",&beamNumX_b3,"beamNumX_b3/D");
rootTree->Branch("beamSignal_b0",&signal_b0,"beamSignal_b0/D");
rootTree->Branch("beamSignal_b1",&signal_b1,"beamSignal_b1/D");
rootTree->Branch("beamSignal_b2",&signal_b2,"beamSignal_b2/D");
rootTree->Branch("beamSignal_b3",&signal_b3,"beamSignal_b3/D");
rootTree->Branch("beamSignal_b0_left",&signal_b0_left,"beamSignal_b0_left/D");
rootTree->Branch("beamSignal_b1_left",&signal_b1_left,"beamSignal_b1_left/D");
rootTree->Branch("beamSignal_b2_left",&signal_b2_left,"beamSignal_b2_left/D");
rootTree->Branch("beamSignal_b3_left",&signal_b3_left,"beamSignal_b3_left/D");
rootTree->Branch("beamSignal_b0_right",&signal_b0_right,"beamSignal_b0_right/D");
rootTree->Branch("beamSignal_b1_right",&signal_b1_right,"beamSignal_b1_right/D");
rootTree->Branch("beamSignal_b2_right",&signal_b2_right,"beamSignal_b2_right/D");
rootTree->Branch("beamSignal_b3_right",&signal_b3_right,"beamSignal_b3_right/D");
rootTree->Branch("eventID",&eventID,"eventID/I");
//rootTree->Branch("board_b0_ch",&board_b0_ch,"board_b0_ch[128]/D");
//rootTree->Branch("board_b1_ch",&board_b1_ch,"board_b1_ch[128]/D");
//rootTree->Branch("board_b2_ch",&board_b2_ch,"board_b2_ch[128]/D");
//rootTree->Branch("board_b3_ch",&board_b3_ch,"board_b3_ch[128]/D");
rootTree->Branch("beamSidebandNoise_b0",&beamSidebandNoise_b0,"beamSidebandNoise_b0/D");
rootTree->Branch("beamSidebandNoise_b1",&beamSidebandNoise_b1,"beamSidebandNoise_b1/D");
rootTree->Branch("beamSidebandNoise_b2",&beamSidebandNoise_b2,"beamSidebandNoise_b2/D");
rootTree->Branch("beamSidebandNoise_b3",&beamSidebandNoise_b3,"beamSidebandNoise_b3/D");
//rootTree->Branch("arrayavg_b0",&arrayavg_b0,"arrayavg_b0[128]/D");
//rootTree->Branch("arrayavg_b1",&arrayavg_b1,"arrayavg_b1[128]/D");
// rootTree->Branch("arrayavg_b2",&arrayavg_b2,"arrayavg_b2[128]/D");
//rootTree->Branch("arrayavg_b3",&arrayavg_b3,"arrayavg_b3[128]/D");
double time;
// import and align matching ethercat data
TTree *tree2 = new TTree("t2", "t2");
std::cout << " Loading Ethercat data." << std::endl;
tree2->ReadFile(ethercatfile.c_str(), "RELTIME2/D:IC1/D:MW1_POSX/D:MW1_POSY/D:ANALOG_IN1/D:ENERGY/D:INTENSITY/D:ION-SORT/D:TIME2/D", '\t');
std::cout << "Ethercat data loaded." << std::endl;
tree2->Print();
int k = 0;
// int count = 0;
double ic1, ic2, mw1_focusx, mw1_focusy, mw2_focusx, mw2_focusy, mw1_posx, mw1_posy, mw2_posx, mw2_posy;
double ic1_avg, ic2_avg, mw1_focusx_avg, mw1_focusy_avg, mw2_focusx_avg, mw2_focusy_avg, mw1_posx_avg, mw1_posy_avg, mw2_posx_avg, mw2_posy_avg;
double analog_in1;
double energy;
double intensity;
double ionsort;
double rel_time2,time2;
double timeoffset;
int mwoffset;
double timewindow;
double timeoffset2;
double timewindow2;
rootTree->Branch("ic1_avg", &ic1_avg, "ic1_avg/D");
rootTree->Branch("mw1_posx", &mw1_posx_avg, "mw1_posx/D");
rootTree->Branch("mw1_posy", &mw1_posy_avg, "mw1_posy/D");
rootTree->Branch("energy", &energy, "energy/D");
rootTree->Branch("intensity", &intensity, "intensity/D");
rootTree->Branch("ionsort", &ionsort, "ionsort/D");
timeoffset = 0.10; //offset between ic and bpm readouts
mwoffset = 2; // offset for timestamped event. MW chamber position correlation seems to be better in other windows
timewindow = -0.0999; //should be a negative number. window size in time to average over.
timeoffset2 = -0.00; //offset between ic and bpm readouts
timewindow2 = -0.05; //should be a negative number. window size in time to average over.
//////////////////////////////////////////////////////////////////
///// ETHERCAT DATA
//////////////////////////////////////////////////////////////////
// tree->SetBranchAddress("time", &time);
tree2->SetBranchAddress("RELTIME2", &rel_time2);
tree2->SetBranchAddress("TIME2", &time2);
tree2->SetBranchAddress("IC1", &ic1);
// tree2->SetBranchAddress("IC2", &ic2);
//tree2->SetBranchAddress("MW1_FOCUSX", &mw1_focusx);
//tree2->SetBranchAddress("MW1_FOCUSY", &mw1_focusy);
///tree2->SetBranchAddress("MW2_FOCUSX", &mw2_focusx);
///tree2->SetBranchAddress("MW2_FOCUSY", &mw2_focusy);
tree2->SetBranchAddress("MW1_POSX", &mw1_posx);
tree2->SetBranchAddress("MW1_POSY", &mw1_posy);
//tree2->SetBranchAddress("MW2_POSX", &mw2_posx);
//tree2->SetBranchAddress("MW2_POSY", &mw2_posy);
tree2->SetBranchAddress("ENERGY", &energy);
tree2->SetBranchAddress("INTENSITY", &intensity);
tree2->SetBranchAddress("ION-SORT", &ionsort);
tree2->SetBranchAddress("ANALOG_IN1", &analog_in1);
int currentEntryTree2 = 1;
// int nevents = tree->GetEntries();
int nevents2 = tree2->GetEntries();
int icCounter = 0;
int count = 0;
int count2 = 0;
//loop through recorded data frames
for (int frame = 0; frame<fileframesize; frame++){
// if (icCounter>10000) break;
eventID = frame;
if (timestampfile) timestampfile >> time ;
//printf("%i %f\n", eventID, time);
count= 0;
count2 = 0;
ic1_avg = 0.;
mw1_posx_avg = 0.;
mw1_posy_avg = 0.;
tree2->GetEntry(currentEntryTree2);
/* if (frame % 100 == 0)
{
printf("merging event %d ,", frame);
printf("Time %f \n", time);
printf("Entry hit %d ,", currentEntryTree2);
printf("Time hit %f \n", time2);
}
*/
while (time2 < time + timeoffset && currentEntryTree2 < nevents2 )
{
if (time2 - time - timeoffset > timewindow)
{
tree2->GetEntry(currentEntryTree2);
if (ic1>0.0) ic1_avg += ic1;
if (ic1>0.0) count++;
// if (frame % 200 == 0) printf("%i %2.3f %2.3f %2.3f %2.3f %2.3f %i \n", count, ic1, time2, time, timeoffset, time2 - time - timeoffset, mwoffset);
}
tree2->GetEntry(currentEntryTree2);
if ( time2 - time - timeoffset2 > timewindow2)
{
tree2->GetEntry(currentEntryTree2 + mwoffset); //why currentEtryTree2-4?
mw1_posx_avg += mw1_posx;
mw1_posy_avg += mw1_posy;
count2++;
// if (i % 2000 == 0) printf("%i %2.3f %2.3f %2.3f %2.3f\n", count2, time, time2, ic1, mw1_posx);
//if (i % 2001 == 0) printf("%i %2.3f %2.3f %2.3f %2.3f\n", count2, time, time2, ic1, mw1_posx);
// if (i % 2002 == 0) printf("%i %2.3f %2.3f %2.3f %2.3f\n", count2, time, time2, ic1, mw1_posx);
// printf("%i %2.3f %2.3f %2.3f %2.3f\n", count2, time, time2, ic1, mw1_posx);
}
// currentEntryTree2++;
tree2->GetEntry(currentEntryTree2);
currentEntryTree2++;
if (count2>0){
mw1_posx_avg /= double(count2); //the positions are weighted by the charge
mw1_posy_avg /= double(count2);
}
if(count>0){
ic1_avg /= double(count);
if (ic1_avg>1.) icCounter++;
// if (frame % 2000 == 0) printf("%i %f.2 %i \n", count, ic1_avg, icCounter);
}
// std::cout << ic1_avg << " " << icCounter << std::endl;
}
/////////end of ethercat matching
if(frame >=2000&& ic1_avg<0.5) continue;
///////////////////////////////////
//// HIT DATA
///////////////////////////////////
//board_b 0
board_b=0;
signal_b0 = 0.;
maxchannelamp_b0 = 0.;
file.seekg(framestart*sizeof(BufferData)+board_b*sizeof(BufferData)+4*frame*sizeof(BufferData));
file.read ((char*)dataptr ,sizeof(BufferData));
if (dataptr->sync_frame.device_nr==board_b){
// std::cout << frame << " " << dataptr->sync_frame.device_nr << " " << dataptr->sync_frame.local_ctr << " " << dataptr->sync_frame.global_ctr << " " << dataptr->sync_frame.sma_state << std::endl;
if (frame%1000==0) std::cout << "Frame: " << frame << " (" <<double(frame)/double(fileframesize)*100.0 << "%)" << std::endl;
for (int i = 0;i<128;i++){
board_b0_ch[i] = dataptr->sensor_data[i];
if (frame<1000){
board_b0_ch_bkg[i] += board_b0_ch[i]/1000.; //find baseline from the average of first 1000 events
}
else if (frame>=1000&& frame<2000){
board_b0_ch[i] -= board_b0_ch_bkg[i]; //histogram the subtracted baseline in the next 1000 events
th2_signal_vs_channel_bkg_b0->Fill(i,board_b0_ch[i]);
if (i==1) graph_bkg_b0->SetPoint(graph_bkg_b0->GetN(), frame, board_b0_ch[i]);
}
else if (frame>=2000) {
board_b0_ch[i]-=board_b0_ch_bkg[i]; // the rest background subtracted
board_b0_ch[i]*=calibration_b0[i]; //calibration factor
th2_signal_vs_channel_b0->Fill(i,board_b0_ch[i]);
// signal_b0 +=board_b0_ch[i] ;
if (board_b0_ch[i]> maxchannelamp_b0) {
maxchannel_b0 = i;
maxchannelamp_b0 = board_b0_ch[i];
}
//calculate a rolling average of the signal
arrayavg_b0[i] = 0;
for (int j = 1; j<length;j++){
array_b0[j-1][i] = array_b0[j][i];
arrayavg_b0[i] += array_b0[j-1][i]/double(length);
}
if( board_b0_ch[i]>-1000){
array_b0[length-1][i] = board_b0_ch[i];
arrayavg_b0[i] += array_b0[length-1][i]/double(length);
}
////////////////////////////////////////////
}
}
// th1_signal_b0->Fill(signal_b0);
}
else {
std::cout << "Error." << std::endl;
}
//board_b 1
board_b=1;
signal_b1=0.;
maxchannelamp_b1 = 0.;
file.seekg(framestart*sizeof(BufferData)+board_b*sizeof(BufferData)+4*frame*sizeof(BufferData));
file.read ((char*)dataptr ,sizeof(BufferData));
if (dataptr->sync_frame.device_nr==board_b){
//std::cout << frame << " " << dataptr->sync_frame.device_nr << std::endl;
for (int i = 0;i<128;i++){
board_b1_ch[i] = dataptr->sensor_data[i];
if (frame<1000){
board_b1_ch_bkg[i] += board_b1_ch[i]/1000.; //find baseline from the average of first 1000 events
}
else if (frame>=1000&& frame<2000){
board_b1_ch[i] -= board_b1_ch_bkg[i]; //histogram the subtracted baseline in the next 1000 events
th2_signal_vs_channel_bkg_b1->Fill(i,board_b1_ch[i]);
if (i==1) graph_bkg_b1->SetPoint(graph_bkg_b1->GetN(), frame, board_b1_ch[i]);
}
else if (frame>=2000) {
board_b1_ch[i]-=board_b1_ch_bkg[i]; // the rest are background subtracted
board_b1_ch[i]*=calibration_b1[i]; //calibration factor
th2_signal_vs_channel_b1->Fill(i,board_b1_ch[i]);
// signal_b1 +=board_b1_ch[i] ;
if (board_b1_ch[i]> maxchannelamp_b1) {
maxchannel_b1 = i;
maxchannelamp_b1 = board_b1_ch[i];
}
//calculate a rolling average of the signal
arrayavg_b1[i] = 0;
for (int j = 1; j<length;j++){
array_b1[j-1][i] = array_b1[j][i];
arrayavg_b1[i] += array_b1[j-1][i]/double(length);
}
if( board_b1_ch[i]>-1000){
array_b1[length-1][i] = board_b1_ch[i];
arrayavg_b1[i] += array_b1[length-1][i]/double(length);
}
////////////////////////////////////////////
}
}
// th1_signal_b1->Fill(signal_b1);
}
else {
std::cout << "Error." << std::endl;
}
//board_b 2
board_b=2;
signal_b2=0.;
maxchannelamp_b2 = 0.;
file.seekg(framestart*sizeof(BufferData)+board_b*sizeof(BufferData)+4*frame*sizeof(BufferData));
file.read ((char*)dataptr ,sizeof(BufferData));
if (dataptr->sync_frame.device_nr==board_b){
//std::cout << frame << " " << dataptr->sync_frame.device_nr << std::endl;
for (int i = 0;i<128;i++){
board_b2_ch[i] = dataptr->sensor_data[i];
if (frame<1000){
board_b2_ch_bkg[i] += board_b2_ch[i]/1000.; //find baseline from the average of first 1000 events
}
else if (frame>=1000&& frame<2000){
board_b2_ch[i] -= board_b2_ch_bkg[i]; //histogram the subtracted baseline in the next 1000 events
th2_signal_vs_channel_bkg_b2->Fill(i,board_b2_ch[i]);
if (i==1) graph_bkg_b2->SetPoint(graph_bkg_b2->GetN(), frame, board_b2_ch[i]);
}
else if (frame>=2000) {
board_b2_ch[i]-=board_b2_ch_bkg[i]; // the rest background subtracted
board_b2_ch[i]*=calibration_b2[i]; //calibration factor
th2_signal_vs_channel_b2->Fill(i,board_b2_ch[i]);
// signal_b2 +=board_b2_ch[i] ;
if (board_b2_ch[i]> maxchannelamp_b2) {
maxchannel_b2 = i;
maxchannelamp_b2 = board_b2_ch[i];
}
//calculate a rolling average of the signal
arrayavg_b2[i] = 0;
for (int j = 1; j<length;j++){
array_b2[j-1][i] = array_b2[j][i];
arrayavg_b2[i] += array_b2[j-1][i]/double(length);
}
if( board_b2_ch[i]>-1000){
array_b2[length-1][i] = board_b2_ch[i];
arrayavg_b2[i] += array_b2[length-1][i]/double(length);
}
////////////////////////////////////////////
}
}
// th1_signal_b2->Fill(signal_b2);
}
else {
std::cout << "Error." << std::endl;
}
//board_b 3
board_b=3;
signal_b3=0.;
maxchannelamp_b3 = 0.;
file.seekg(framestart*sizeof(BufferData)+board_b*sizeof(BufferData)+4*frame*sizeof(BufferData));
file.read ((char*)dataptr ,sizeof(BufferData));
if (dataptr->sync_frame.device_nr==board_b){
//std::cout << frame << " " << dataptr->sync_frame.device_nr << std::endl;
for (int i = 0;i<128;i++){
board_b3_ch[i] = dataptr->sensor_data[i];
if (frame<1000){
board_b3_ch_bkg[i] += board_b3_ch[i]/1000.; //find baseline from the average of first 1000 events
}
else if (frame>=1000&& frame<2000){
board_b3_ch[i] -= board_b3_ch_bkg[i]; //histogram the subtracted baseline in the next 1000 events
th2_signal_vs_channel_bkg_b3->Fill(i,board_b3_ch[i]);
if (i==1) graph_bkg_b3->SetPoint(graph_bkg_b3->GetN(), frame, board_b3_ch[i]);
}
else if (frame>=2000) {
board_b3_ch[i]-=board_b3_ch_bkg[i]; // the rest of the events are background subtracted
board_b3_ch[i]*=calibration_b3[i]; //with a calibration factor
th2_signal_vs_channel_b3->Fill(i,board_b3_ch[i]);
// signal_b3 +=board_b3_ch[i] ;
if (board_b3_ch[i]> maxchannelamp_b3) {
maxchannel_b3 = i;
maxchannelamp_b3 = board_b3_ch[i];
}
//calculate a rolling average of the signal
arrayavg_b3[i] = 0;
for (int j = 1; j<length;j++){
array_b3[j-1][i] = array_b3[j][i];
arrayavg_b3[i] += array_b3[j-1][i]/double(length);
}
if( board_b3_ch[i]>-1000){
array_b3[length-1][i] = board_b3_ch[i];
arrayavg_b3[i] += array_b3[length-1][i]/double(length);
}
////////////////////////////////////////////
}
}
// th1_signal_b3->Fill(signal_b3);
}
else {
std::cout << "Error." << std::endl;
}
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
//start the signal analysis
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
if (frame>=2000){
////////////////////////////////////////////////////////////
//boxcar smoothing filter
////////////////////////////////////////////////////////////
if (smooth_on){
maxchannelamp_b0 = 0.0;
maxchannelamp_b1 = 0.0;
maxchannelamp_b2 = 0.0;
maxchannelamp_b3 = 0.0;
}
boxcar.clear();
boxcar.push_back(board_b0_ch[0]);
boxcar.push_back(board_b0_ch[1]);
// std::cout << frame << std::endl;
for (int i = 0;i<128;i++){
channellist[i] = i;
if (i<126) {
boxcar.push_back(board_b0_ch[i+2]);
}
if ( (i<126&&boxcar.size()>5) || (i>=126&&boxcar.size()>3) ) boxcar.erase(boxcar.cbegin());
board_b0_smooth_ch[i] = gsl_stats_mean(boxcar.data(), 1, 5 );
if (smooth_on && board_b0_smooth_ch[i]> maxchannelamp_b0) {
maxchannel_b0 = i;
maxchannelamp_b0 = board_b0_smooth_ch[i];
}
}
if (eventID>2001&&maxchannelamp_b0>100&&!graphsaved_b0) {
gr_b0 = new TGraph(128, channellist, board_b0_ch);
gr_b0->SetTitle("RawData_b0");
gr_b0->SetName("RawData_b0");
gr_b0->Write();
gr_sm_b0 = new TGraph(128, channellist, board_b0_smooth_ch);
gr_sm_b0->SetTitle("SmoothedData_b0");
gr_sm_b0->SetName("SmoothedData_b0");
gr_sm_b0->Write();
graphsaved_b0=true;
}
boxcar.clear();
boxcar.push_back(board_b1_ch[0]);
boxcar.push_back(board_b1_ch[1]);
// std::cout << frame << std::endl;
for (int i = 0;i<128;i++){
channellist[i] = i;
if (i<126) {
boxcar.push_back(board_b1_ch[i+2]);
}
if ( (i<126&&boxcar.size()>5) || (i>=126&&boxcar.size()>3) ) boxcar.erase(boxcar.cbegin());
board_b1_smooth_ch[i] = gsl_stats_mean(boxcar.data(), 1, 5 );
if (smooth_on && board_b1_smooth_ch[i]> maxchannelamp_b1) {
maxchannel_b1 = i;
maxchannelamp_b1 = board_b1_smooth_ch[i];
}
}
if (eventID>2001&&maxchannelamp_b1>100&&!graphsaved_b1) {
gr_b1 = new TGraph(128, channellist, board_b1_ch);
gr_b1->SetTitle("RawData_b1");
gr_b1->SetName("RawData_b1");
gr_b1->Write();
gr_sm_b1 = new TGraph(128, channellist, board_b1_smooth_ch);
gr_sm_b1->SetTitle("SmoothedData_b1");
gr_sm_b1->SetName("SmoothedData_b1");
gr_sm_b1->Write();
graphsaved_b1=true;
}
boxcar.clear();
boxcar.push_back(board_b2_ch[0]);
boxcar.push_back(board_b2_ch[1]);
// std::cout << frame << std::endl;
for (int i = 0;i<128;i++){
channellist[i] = i;
if (i<126) {
boxcar.push_back(board_b2_ch[i+2]);
}
if ( (i<126&&boxcar.size()>5) || (i>=126&&boxcar.size()>3) ) boxcar.erase(boxcar.cbegin());
board_b2_smooth_ch[i] = gsl_stats_mean(boxcar.data(), 1, 5 );
if (smooth_on && board_b2_smooth_ch[i]> maxchannelamp_b2) {
maxchannel_b2 = i;
maxchannelamp_b2 = board_b2_smooth_ch[i];
}
}
if (eventID>2001&&maxchannelamp_b2>100&&!graphsaved_b2) {
gr_b2 = new TGraph(128, channellist, board_b2_ch);
gr_b2->SetTitle("RawData_b2");
gr_b2->SetName("RawData_b2");
gr_b2->Write();
gr_sm_b2 = new TGraph(128, channellist, board_b2_smooth_ch);
gr_sm_b2->SetTitle("SmoothedData_b2");
gr_sm_b2->SetName("SmoothedData_b2");
gr_sm_b2->Write();
graphsaved_b2=true;
}
boxcar.clear();
boxcar.push_back(board_b3_ch[0]);
boxcar.push_back(board_b3_ch[1]);
// std::cout << frame << std::endl;
for (int i = 0;i<128;i++){
channellist[i] = i;
if (i<126) {
boxcar.push_back(board_b3_ch[i+2]);
}
if ( (i<126&&boxcar.size()>5) || (i>=126&&boxcar.size()>3) ) boxcar.erase(boxcar.cbegin());
board_b3_smooth_ch[i] = gsl_stats_mean(boxcar.data(), 1, 5 );
if (smooth_on && board_b3_smooth_ch[i]> maxchannelamp_b3) {
maxchannel_b3 = i;
maxchannelamp_b3 = board_b3_smooth_ch[i];
}
}
if (eventID>2001&&maxchannelamp_b3>100&&!graphsaved_b3) {
gr_b3 = new TGraph(128, channellist, board_b3_ch);
gr_b3->SetTitle("RawData_b3");
gr_b3->SetName("RawData_b3");
gr_b3->Write();
gr_sm_b3 = new TGraph(128, channellist, board_b3_smooth_ch);
gr_sm_b3->SetTitle("SmoothedData_b3");
gr_sm_b3->SetName("SmoothedData_b3");
gr_sm_b3->Write();
graphsaved_b3=true;
}
////////////////////////////////////////////////////////////
//find the approx FWHM
////////////////////////////////////////////////////////////
nfwhm_b0 =0;
nfwhm_b1 =0;
nfwhm_b2 =0;
nfwhm_b3 =0;
if (smooth_on){
for (int i = 0;i<128;i++){
if (board_b0_smooth_ch[i] > maxchannelamp_b0/2.) nfwhm_b0++;
if (board_b1_smooth_ch[i] > maxchannelamp_b1/2.) nfwhm_b1++;
if (board_b2_smooth_ch[i] > maxchannelamp_b2/2.) nfwhm_b2++;
if (board_b3_smooth_ch[i] > maxchannelamp_b3/2.) nfwhm_b3++;
signal_gsl_b0[i] = 0.;
signal_gsl_b1[i] = 0.;
signal_gsl_b2[i] = 0.;
signal_gsl_b3[i] = 0.;
}
}
else {
for (int i = 0;i<128;i++){
if (board_b0_ch[i] > maxchannelamp_b0/2.) nfwhm_b0++;
if (board_b1_ch[i] > maxchannelamp_b1/2.) nfwhm_b1++;
if (board_b2_ch[i] > maxchannelamp_b2/2.) nfwhm_b2++;
if (board_b3_ch[i] > maxchannelamp_b3/2.) nfwhm_b3++;
signal_gsl_b0[i] = 0.;
signal_gsl_b1[i] = 0.;
signal_gsl_b2[i] = 0.;
signal_gsl_b3[i] = 0.;
}
}
////////////////////////////////////////////////////////////
//integrate the sidebands first to check for baseline shift
////////////////////////////////////////////////////////////
beamSidebandNoise_b0 = 0.;
sidenumtocalc_b0 = 0;
for (int i =0; i<maxchannel_b0-nfwhm_b0; i++){
if (i>=0 && i<=127){
beamSidebandNoise_b0 += board_b0_ch[i]; //integrate the noise outside the peak
sidenumtocalc_b0++;
}
}
for (int i = maxchannel_b0+nfwhm_b0; i < 128; i++){
if (i>=0 && i<=127){
beamSidebandNoise_b0 += board_b0_ch[i]; //integrate the noise outside the peak
sidenumtocalc_b0++;
}
}
if (sidenumtocalc_b0>0) beamSidebandNoise_b0 = beamSidebandNoise_b0 /double(sidenumtocalc_b0); // channel baseline shift
beamSidebandNoise_b1 = 0.;
sidenumtocalc_b1 = 0;
for (int i =0; i<maxchannel_b1-nfwhm_b1; i++){
if (i>=0 && i<=127){
beamSidebandNoise_b1 += board_b1_ch[i]; //integrate the noise outside the peak
sidenumtocalc_b1++;
}
}
for (int i = maxchannel_b1+nfwhm_b1; i < 128; i++){
if (i>=0 && i<=127){
beamSidebandNoise_b1 += board_b1_ch[i]; //integrate the noise outside the peak
sidenumtocalc_b1++;
}
}
if (sidenumtocalc_b1>0) beamSidebandNoise_b1 = beamSidebandNoise_b1 /double(sidenumtocalc_b1); // channel baseline shift
beamSidebandNoise_b2 = 0.;
sidenumtocalc_b2 = 0;
for (int i =0; i<maxchannel_b2-nfwhm_b2; i++){
if (i>=0 && i<=127){
beamSidebandNoise_b2 += board_b2_ch[i]; //integrate the noise outside the peak
sidenumtocalc_b2++;
}
}
for (int i = maxchannel_b2+nfwhm_b2; i < 128; i++){
if (i>=0 && i<=127){
beamSidebandNoise_b2 += board_b2_ch[i]; //integrate the noise outside the peak
sidenumtocalc_b2++;
}
}
if (sidenumtocalc_b2>0) beamSidebandNoise_b2 = beamSidebandNoise_b2 /double(sidenumtocalc_b2); // channel baseline shift
beamSidebandNoise_b3 = 0.;
sidenumtocalc_b3 = 0;
for (int i =0; i<maxchannel_b3-nfwhm_b3; i++){
if (i>=0 && i<=127){
beamSidebandNoise_b3 += board_b3_ch[i]; //integrate the noise outside the peak
sidenumtocalc_b3++;
}
}
for (int i = maxchannel_b3+nfwhm_b3; i < 128; i++){
if (i>=0 && i<=127){
beamSidebandNoise_b3 += board_b3_ch[i]; //integrate the noise outside the peak
sidenumtocalc_b3++;
}
}
if (sidenumtocalc_b3>0) beamSidebandNoise_b3 = beamSidebandNoise_b3 /double(sidenumtocalc_b3); // channel baseline shift
////////////////////////////////////////////////////////////
//integrate under the approximate peak
//build the channel list for statistical analysis
////////////////////////////////////////////////////////////
numtocalc_b0 = 0;
numtocalc_b1 = 0;
numtocalc_b2 = 0;
numtocalc_b3 = 0;
beamSidebandNoise_b0=0.;
beamSidebandNoise_b1=0.;
beamSidebandNoise_b2=0.;
beamSidebandNoise_b3=0.;
signal_b0_left = 0.;
signal_b0_right = 0.;
for (int i = maxchannel_b0-nfwhm_b0 ; i <= maxchannel_b0 + nfwhm_b0; i++){
if (i>=0 && i<=127 && board_b0_ch[i]>50){
signal_b0 +=board_b0_ch[i]-beamSidebandNoise_b0 ;
if (i<64) {signal_b0_left +=board_b0_ch[i]-beamSidebandNoise_b0 ;}
else {signal_b0_right +=board_b0_ch[i]-beamSidebandNoise_b0 ;}
signal_gsl_b0[numtocalc_b0]=board_b0_ch[i]-beamSidebandNoise_b0 ;
// channellist_gsl_b0[numtocalc_b0] = i;
channellist_gsl_b0[numtocalc_b0] = pos[i];
numtocalc_b0++;
}
}
th1_signal_b0->Fill(signal_b0);
signal_b1_left = 0.;
signal_b1_right = 0.;
for (int i = maxchannel_b1-nfwhm_b1 ; i <= maxchannel_b1 + nfwhm_b1; i++){
if (i>=0 && i<=127&&board_b1_ch[i]>50){
signal_b1 +=board_b1_ch[i]-beamSidebandNoise_b1 ;
if (i<64) {signal_b1_left +=board_b1_ch[i]-beamSidebandNoise_b1 ;}
else {signal_b1_right +=board_b1_ch[i]-beamSidebandNoise_b1 ;}
signal_gsl_b1[numtocalc_b1]=board_b1_ch[i]-beamSidebandNoise_b1 ;
// channellist_gsl_b1[numtocalc_b1] = i;
channellist_gsl_b1[numtocalc_b1] = pos[i];
numtocalc_b1++;
}
}
th1_signal_b0->Fill(signal_b1);
signal_b2_left = 0.;
signal_b2_right = 0.;
for (int i = maxchannel_b2-nfwhm_b2 ; i <= maxchannel_b2 + nfwhm_b2; i++){
if (i>=0 && i<=127&&board_b2_ch[i]>50){
signal_b2 +=board_b2_ch[i]-beamSidebandNoise_b2 ;
if (i<64) {signal_b2_left +=board_b2_ch[i]-beamSidebandNoise_b2 ;}
else {signal_b2_right +=board_b2_ch[i]-beamSidebandNoise_b2 ;}
signal_gsl_b2[numtocalc_b2]=board_b2_ch[i]-beamSidebandNoise_b2 ;
// channellist_gsl_b2[numtocalc_b2] = i;
channellist_gsl_b2[numtocalc_b2] = pos[i];
numtocalc_b2++;
}
}
th1_signal_b0->Fill(signal_b2);
signal_b3_left = 0.;
signal_b3_right = 0.;
for (int i = maxchannel_b3-nfwhm_b3 ; i <= maxchannel_b3 + nfwhm_b3; i++){
if (i>=0 && i<=127&&board_b3_ch[i]>50){
signal_b3 +=board_b3_ch[i]-beamSidebandNoise_b3 ;
if (i<64) {signal_b3_left +=board_b3_ch[i]-beamSidebandNoise_b3 ;}
else {signal_b3_right +=board_b3_ch[i]-beamSidebandNoise_b3 ;}
signal_gsl_b3[numtocalc_b3]=board_b3_ch[i]-beamSidebandNoise_b3 ;
//channellist_gsl_b3[numtocalc_b3] = i;
channellist_gsl_b3[numtocalc_b3] = pos[i];
numtocalc_b3++;
}
}
th1_signal_b0->Fill(signal_b3);
for (int i=0;i<128;i++){
if(signal_b0>700) {
th2_signal_vs_channel_sub_b0->Fill(i,board_b0_ch[i]-beamSidebandNoise_b0);
sumvector_b0[i] += board_b0_ch[i];//-beamSidebandNoise_b0;
}
if(signal_b1>700) {
th2_signal_vs_channel_sub_b1->Fill(i,board_b1_ch[i]-beamSidebandNoise_b1);
sumvector_b1[i] += board_b1_ch[i];//-beamSidebandNoise_b1;
}
if(signal_b2>700){
th2_signal_vs_channel_sub_b2->Fill(i,board_b2_ch[i]-beamSidebandNoise_b2);
sumvector_b2[i] += board_b2_ch[i];//-beamSidebandNoise_b2;
}
if(signal_b3>700) {
th2_signal_vs_channel_sub_b3->Fill(i,board_b3_ch[i]-beamSidebandNoise_b3);
sumvector_b3[i] += board_b3_ch[i];//-beamSidebandNoise_b3;
}
}
if(signal_b0>100) beamontime[0]+=1.0;
if(signal_b1>100) beamontime[1]+=1.0;
if(signal_b2>100) beamontime[2]+=1.0;
if(signal_b3>100) beamontime[3]+=1.0;
///add gsl stuff here.
/* std::cout << maxchannel_b0 << " " << maxchannel_b1 << " "<< maxchannel_b2 << " "<< maxchannel_b3 << " " << std::endl;
std::cout << maxchannelamp_b0 << " " << maxchannelamp_b1 << " "<< maxchannelamp_b2 << " "<< maxchannelamp_b3 << " " << std::endl;
std::cout << nfwhm_b0 << " " << nfwhm_b1 << " " << nfwhm_b2 << " " << nfwhm_b3 << " " << std::endl;
std::cout << std::endl;*/
beamPosX_b0 = gsl_stats_wmean(signal_gsl_b0,1,channellist_gsl_b0,1,numtocalc_b0); //calculate the weighted mean
beamFocusX_b0 = gsl_stats_wsd_with_fixed_mean(signal_gsl_b0,1,channellist_gsl_b0,1,numtocalc_b0,beamPosX_b0); //Standard Deviation
beamSkewX_b0 = gsl_stats_wskew_m_sd(signal_gsl_b0,1,channellist_gsl_b0,1,numtocalc_b0,beamPosX_b0,beamFocusX_b0); //skewness (symmetry)
beamKurtX_b0 = gsl_stats_wkurtosis_m_sd(signal_gsl_b0,1,channellist_gsl_b0,1,numtocalc_b0,beamPosX_b0,beamFocusX_b0); //excess kurtosis (well behaved tails)
beamNumX_b0 = numtocalc_b0;
beamFocusX_b0 *=2.3548;//SD-->FWHM
beamPosX_b1 = gsl_stats_wmean(signal_gsl_b1,1,channellist_gsl_b1,1,numtocalc_b1); //calculate the weighted mean
beamFocusX_b1 = gsl_stats_wsd_with_fixed_mean(signal_gsl_b1,1,channellist_gsl_b1,1,numtocalc_b1,beamPosX_b1); //Standard Deviation
beamSkewX_b1 = gsl_stats_wskew_m_sd(signal_gsl_b1,1,channellist_gsl_b1,1,numtocalc_b1,beamPosX_b1,beamFocusX_b1); //skewness (symmetry)
beamKurtX_b1 = gsl_stats_wkurtosis_m_sd(signal_gsl_b1,1,channellist_gsl_b1,1,numtocalc_b1,beamPosX_b1,beamFocusX_b1); //excess kurtosis (well behaved tails)
beamNumX_b1 = numtocalc_b1;
beamFocusX_b1 *=2.3548;//SD-->FWHM
beamPosX_b2 = gsl_stats_wmean(signal_gsl_b2,1,channellist_gsl_b2,1,numtocalc_b2); //calculate the weighted mean
beamFocusX_b2 = gsl_stats_wsd_with_fixed_mean(signal_gsl_b2,1,channellist_gsl_b2,1,numtocalc_b2,beamPosX_b2); //Standard Deviation
beamSkewX_b2 = gsl_stats_wskew_m_sd(signal_gsl_b2,1,channellist_gsl_b2,1,numtocalc_b2,beamPosX_b2,beamFocusX_b2); //skewness (symmetry)
beamKurtX_b2 = gsl_stats_wkurtosis_m_sd(signal_gsl_b2,1,channellist_gsl_b2,1,numtocalc_b2,beamPosX_b2,beamFocusX_b2); //excess kurtosis (well behaved tails)
beamNumX_b2 = numtocalc_b2;
beamFocusX_b2 *=2.3548;//SD-->FWHM
beamPosX_b3 = gsl_stats_wmean(signal_gsl_b3,1,channellist_gsl_b3,1,numtocalc_b3); //calculate the weighted mean
beamFocusX_b3 = gsl_stats_wsd_with_fixed_mean(signal_gsl_b3,1,channellist_gsl_b3,1,numtocalc_b3,beamPosX_b3); //Standard Deviation
beamSkewX_b3 = gsl_stats_wskew_m_sd(signal_gsl_b3,1,channellist_gsl_b3,1,numtocalc_b3,beamPosX_b3,beamFocusX_b3); //skewness (symmetry)
beamKurtX_b3 = gsl_stats_wkurtosis_m_sd(signal_gsl_b3,1,channellist_gsl_b3,1,numtocalc_b3,beamPosX_b3,beamFocusX_b3); //excess kurtosis (well behaved tails)
beamNumX_b3 = numtocalc_b3;
beamFocusX_b3 *=2.3548;//SD-->FWHM
/////////////////////////////////////////////////
/////Add fitting algorithm here
/////////////////////////////////////////////////
/*
use board_b0_ch[i] to fill a TGraph.
fit with a gaussian
subtract the difference
fill a THF2 with the difference, delta_amp vs channel
*/
// std::cout << ic1_avg << std::endl;
//fit with a gaussian function;
if (doFit&&ic1_avg>0.1){
if ((lastfit_b0!=0||lastfit_b1!=0)&&numtocalc_b0>1&&numtocalc_b0<50){
gausfunc_b0->SetParameters(signal_b0/(sqrt(2)*beamFocusX_b0/2.3548),beamPosX_b0,4.,0.);
gausfunc_b1->SetParameters(signal_b1/(sqrt(2)*beamFocusX_b1/2.3548),beamPosX_b1,4.,0.);
}
else if (signal_b0<=0||signal_b1<=0) {
gausfunc_b0->SetParameters(100.,35.,10.,0.);
gausfunc_b1->SetParameters(100.,35.,10.,0.);
}
gausfunc_b0->SetParLimits(0,0.,5000.);
gausfunc_b0->SetParLimits(1,0.,128.);
gausfunc_b0->SetParLimits(2,0.5,40.);
gausfunc_b0->SetParLimits(3,-150.,150.);
gausfunc_b1->SetParLimits(0,0.,5000.);
gausfunc_b1->SetParLimits(1,0,128);
gausfunc_b1->SetParLimits(2,0.5,40.);
gausfunc_b1->SetParLimits(3,-150.,150.);
//signal_gsl_b0,1,channellist_gsl_b0,1,numtocalc_b0)
gausgraph_b0 = new TGraphErrors(128,channellist_gsl_b0,signal_gsl_b0,errorx,errory);
gausgraph_b1 = new TGraphErrors(128,channellist_gsl_b1,signal_gsl_b1,errorx,errory);
lastfit_b0 = gausgraph_b0->Fit(gausfunc_b0,"QRN","",1,128); // single gaussian fit
lastfit_b1 = gausgraph_b1->Fit(gausfunc_b1,"QRN","",1,128); // single gaussian fit
beamPosX_fit_b0 = gausfunc_b0->GetParameter(1);
beamFocusX_fit_b0 =2.3548* gausfunc_b0->GetParameter(2);
// beamChi2_fit_b0 = gausfunc_b0->GetChisquare()/gausfunc_b0->GetNDF();
// beamPeakX_fit_b0 = gausfunc_b0->GetParameter(0);
beamPosX_fit_b1 = gausfunc_b1->GetParameter(1);
beamFocusX_fit_b1 =2.3548* gausfunc_b1->GetParameter(2);
// beamChi2_fit_b1 = gausfunc_b1->GetChisquare()/gausfunc_b1->GetNDF();
// beamPeakX_fit_b1 = gausfunc_b1->GetParameter(0);
// cout << lastfit_b0 << " " << lastfit_b1 << " " << ic1_avg << " " << maxchannelamp_b0 << " " << nfwhm_b0<< " " << nfwhm_b1 <<" " << beamPosX_b0 << " " <<beamPosX_b1 << " " << beamPosX_fit_b0 << " " << beamPosX_fit_b1 << " " << signal_b0 << " " << signal_b1 << " " << energy << " " << intensity << endl;
/*
for (int ch = 4; ch < 64; ch++){
th2d_fitdiff_channel->Fill(ch, double(channelamp[ch]-gausfunc->Eval(ch)));
}
for (int ch = 64; ch < 128; ch++){
th2d_fit2diff_channel->Fill(ch, double(channelamp[ch]-gausfunc2->Eval(ch)));
}
*/
}
rootTree->Fill();
}
if (frameend>0 && frame+framestart>=frameend) break;
}//end of loop over frames
/* th2_signal_vs_channel_b0->Write();
th2_signal_vs_channel_b1->Write();
th2_signal_vs_channel_b2->Write();
th2_signal_vs_channel_b3->Write();
th2_signal_vs_channel_bkg_b0->Write();
th2_signal_vs_channel_bkg_b1->Write();
th2_signal_vs_channel_bkg_b2->Write();
th2_signal_vs_channel_bkg_b3->Write();
th1_signal_b0->Write();
th1_signal_b1->Write();
th1_signal_b2->Write();
th1_signal_b3->Write();*/
graph_bkg_b0->SetName("graph_bkg_b0"); // graph_bkg_b0->Write();
graph_bkg_b1->SetName("graph_bkg_b1"); // graph_bkg_b1->Write();
graph_bkg_b2->SetName("graph_bkg_b2"); // graph_bkg_b2->Write();
graph_bkg_b3->SetName("graph_bkg_b3"); // graph_bkg_b3->Write();
sumvector_b0_ptr->Write("sumvector_b0");
sumvector_b1_ptr->Write("sumvector_b1");
sumvector_b2_ptr->Write("sumvector_b2");
sumvector_b3_ptr->Write("sumvector_b3");
beamontime_ptr->Write("beamontime");
// bic1->Fill();
// bmw1_posx->Fill();
//bmw1_posy->Fill();
rootFile->Write();
rootFile->Close();
}
std::cout << eventID << " frames analysed." << std::endl;
return 0;
}
else {
std::cerr << "Error 1" << std::endl;
return 1;
}
}
int main(int argc, char **argv){
analyse(argc, argv);
}