data analysis scripts
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

772 lines
28 KiB

#define hit_analyse_v2_cxx
#include "hit_analyse_v2.h"
#include <boost/math/statistics/linear_regression.hpp>
int main(int argc, char **argv){
opendatafiles(argc, argv);
histograms(argc, argv);
analyse(argc, argv);
closedatafiles();
return 0;
}
int opendatafiles(int argc, char ** argv){
if (argc>2){
//open bpm data file
filename = Form("%s%s.da2",argv[1],argv[2]);
file.open(filename, ifstream::in | ifstream::binary);
if (!file.is_open())
{
std::cerr << " ### Hitdata: File could not be opened!" << filename << std::endl;
return 0; //file could not be opened
}
else {std::cout << filename << " opened successfully." << std::endl;}
ethercat_ts_filename = Form("%s/ethercat/SVB/timestamp/%s_channel18_timestamp.txt",argv[1],argv[2]);
ethercat_ts_file.open(ethercat_ts_filename, ifstream::in);
if (!ethercat_ts_file.is_open())
{
std::cerr << " ### Hitdata: File could not be opened!" << ethercat_ts_filename << std::endl;
return 0; //file could not be opened
}
else {std::cout << ethercat_ts_filename << " opened successfully." << std::endl;}
ethercat_ic1_filename = Form("%s/ethercat/SVB/%s_channel1.txt",argv[1],argv[2]);
ethercat_ic1_file.open(ethercat_ic1_filename, ifstream::in);
if (!ethercat_ic1_file.is_open())
{
std::cerr << " ### Hitdata: File could not be opened!" << ethercat_ic1_filename << std::endl;
return 0; //file could not be opened
}
else {std::cout << ethercat_ic1_filename << " opened successfully." << std::endl;}
ethercat_ic2_filename = Form("%s/ethercat/SVB/%s_channel2.txt",argv[1],argv[2]);
ethercat_ic2_file.open(ethercat_ic2_filename, ifstream::in);
if (!ethercat_ic2_file.is_open())
{
std::cerr << " ### Hitdata: File could not be opened!" << ethercat_ic2_filename << std::endl;
return 0; //file could not be opened
}
else {std::cout << ethercat_ic2_filename << " opened successfully." << std::endl;}
bpm_ts_filename = Form("%s/root/timestamp/%s_timestamp.txt",argv[1],argv[2]);
bpm_ts_file.open(bpm_ts_filename, ifstream::in);
if (!bpm_ts_file.is_open())
{
std::cerr << " ### Hitdata: File could not be opened!" << bpm_ts_filename << std::endl;
return 0; //file could not be opened
}
else {std::cout << bpm_ts_filename << " opened successfully." << std::endl;}
string visualize_check = argv[5]; //plot data
if (visualize_check == "vis_true") {visualize = true;}
else{ visualize= false;}
}
return 1;
}
int closedatafiles(){
if (file.is_open()) file.close();
// if (timestampfile.is_open()) timestampfile.close();
//if (offsetfile.is_open()) offsetfile.close();
ethercat_ts_file.close();
ethercat_ic1_file.close();
ethercat_ic1_file.close();
bpm_ts_file.close();
// rootFile->Write();
rootFile->Close();
return 1;
}
double * timealign()
{
static double offsetpar[4];
std::vector<double> ts_eth;
std::vector<double> frame_eth;
std::vector<double> ts_bpm;
std::vector<double> frame_bpm;
double dummy1, dummy2;
while (ethercat_ts_file >> dummy1 >> dummy2){
ts_eth.push_back(dummy1);
frame_eth.push_back(dummy2);
}
cout << "size of ts_eth: " << ts_eth.size() << endl;
while (bpm_ts_file >> dummy1 >> dummy2){
ts_bpm.push_back(dummy1);
frame_bpm.push_back(dummy2);
}
cout << "size of ts_bpm: " << ts_bpm.size() << endl;;
auto [c0_eth, c1_eth] = boost::math::statistics::simple_ordinary_least_squares(frame_eth, ts_eth);
auto [c0_bpm, c1_bpm] = boost::math::statistics::simple_ordinary_least_squares(frame_bpm, ts_bpm);
std::cout << "timestamp = " << c0_eth << " + " << c1_eth << "*x" << "\n";
std::cout << "timestamp = " << c0_bpm << " + " << c1_bpm << "*y" << "\n";
// eth_frame(x) = floor(( offsetpar[2] + offsetpar[3]*bpm_frame(y) - offsetpar[0])/offsetpar[1]);
// bpm_frame(y) = (offsetpar[0]+ offsetpar[1]*eth_frame(x) - offsetpar[2]) /offsetpar[3];
//offset = (c0_eth - c0_bpm)*10;
offsetpar[0] = c0_eth;
offsetpar[1] = c1_eth;
offsetpar[2] = c0_bpm;
offsetpar[3] = c1_bpm;
ethercat_ts_file.close();
bpm_ts_file.close();
return offsetpar;
}
void readethercat()
{
double time[2];
double tempic1 = 0.;
double tempic2 = 0.;
while(ethercat_ic1_file >> time[0] >> tempic1){
vec_ic1.push_back(tempic1);
}
while(ethercat_ic2_file >> time[1] >> tempic2){
vec_ic2.push_back(tempic2);
}
// cout << time[0][0] << " " << ethercat.ic1 << " " << ethercat.ic2 << endl;
// cout << time[0][0] << " " << time[0][1] << " " << time[0][0]-time[0][1] << endl;
// cout << time[1][0] << " " << time[1][1] << " " << time[1][0]-time[1][1] << endl;
}
int analyse(int argc, char **argv)
{
int first_frame = 0; // 1440000
int nr_frames = -1;
int increment = 1;
double frameoffset = atof(argv[3]);
double dummy;
double * offset = timealign();
int ethercatoffset = floor((offset[0]+ offset[1]*0.0 - offset[2]) /offset[3] - frameoffset); //start at the 0th ethercat frame
first_frame = ethercatoffset; // start looking in the BPM data only once the ethercat data has started
cout << "first frame: " << first_frame << endl;
///timestamp finding variables
float fs = 10000; //10kHz fibre bpm
float threshold = 0.5;
// fs = 20kHz for ethercat IC, threshold = 2500
// fs = 10kHz for fBPM, threshold = 0.5
//Decodes timestamp data from synchro stream.
//fs is frame rate in Hz.
//threshold is the threshold value. Use e.g. 0.5 for boolean data
//Timestamper bitrate is assumed to be 250 bps, 4 transmissions/s
int current_pos_in_samples = 0;
int samples_per_50ms = floor(50e-3 * fs);
int samples_per_one_transmission = floor(250e-3 * fs);
int samples_per_bit = floor(4e-3 * fs);
string outfilename;
outfilename+=argv[1];
outfilename+="root/timestamp/";
outfilename+=argv[2];
outfilename+="_timestamp.txt";
// outfile.open(outfilename);
// if (outfile.good()) {cout << outfilename << " opened successfully." << endl;}
// else {cout << outfilename << " opening failed." << endl;}
cout << "samples_per_50ms: " << samples_per_50ms << endl;
cout << "samples_per_one_transmission :" << samples_per_one_transmission << endl;
cout << "samples_per_bit: "<< samples_per_bit << endl;
//%this is used for byte decoding
int bit_multipliers[10] = {0, 1, 2, 4, 8, 16, 32, 64, 128, 0}; //1+byte+1
// %and this for word decoding
int byte_multipliers[4] = {1, 256, 65536, 16777216};
//%Here are positions of each transmission and decoded values
vector<int> block_positions;
vector<float> block_data;
vector<float> byte_data;
vector<float> bit_data;
vector<int> bit_pattern_to_test;
vector<float> sample_buffer;
sample_buffer.assign(floor(4*10*samples_per_bit+samples_per_50ms),0);
float byte_value;
int block_nr = 0;
float block_value;
int nbelowthreshold = 0;
int nabovethreshold = 0;
int last_nbelowthreshold = 0;
int last_nabovethreshold = 0;
float intime;
float analog_in2;
float last_analog_in2 = 0;
int transmission_start_in_samples = 0;
//Read first record to find board configuration
Fullframe sampleframe;
if (sampleframe.read(&file) == 0)
{
std::cerr << " ### Hitdata: First frame could not be read!" << std::endl;
file.close();
return 0;
}
else {
std::cout << "Sample frame size (bytes): " << sampleframe.sizeInFile() << std::endl;
}
//Check file size
file.seekg(0, std::ios::beg);
std::streamsize fsize = file.tellg();
file.seekg(0, std::ios::end);
fsize = file.tellg() - fsize;
//Determine real frames to read
unsigned int max_frames = fsize / sampleframe.sizeInFile();
if ((max_frames == -1) || (max_frames < nr_frames))
nr_frames = max_frames;
std::cout << " Hitdata: Nr frames to be read: " << nr_frames << std::endl;
///set the background levels from first N events
int bkg_frames = 1000;
if (set_background_v2(0, bkg_frames)==0) return 0;
BPMbeamrecon_Zeroed.Position = -128.;
BPMbeamrecon_Zeroed.Focus = -1.;
BPMbeamrecon_Zeroed.Peak = -1.;
BPMbeamrecon_Zeroed.Position = -128.;
BPMbeamrecon_Zeroed.Rsqr = -1.;
BPMbeamrecon_Zeroed.Skew = -128.;
BPMbeamrecon_Zeroed.Position = -128.;
BPMbeamrecon_Zeroed.Sum = 0.;
BPMbeamrecon_Zeroed.n_channels = 0;
//read board
readethercat(); //get the relevant ethercat data;. fills two vectors for ic1 and ic2
int ethercat_frame = 0;
//Read!
std::cout << "Reading data starting from frame: " << first_frame << std::endl;
file.seekg(first_frame * sampleframe.sizeInFile(), std::ios::beg);
for (int frame_nr = first_frame; frame_nr < nr_frames; frame_nr++)
{
eventID=frame_nr;
// offset = floor((c0_bpm + c1_bpm*currentframe - c0_eth)/c1_eth);
ethercatoffset = floor(( offset[2] + offset[3]*(frame_nr+frameoffset) - offset[0])/offset[1]);
//cout << eventID << " " << ethercatoffset << " " << ( offset[2] + offset[3]*float(frame_nr+frameoffset) - offset[0] ) / offset[1] << endl;
if (ethercatoffset>=0){
ethercat.ic1 = vec_ic1[ethercatoffset]; //not a simple 2:1 frame alignmenmt
ethercat.ic2 = vec_ic2[ethercatoffset];
ethercat.ic1 += vec_ic1[ethercatoffset+1];
ethercat.ic2 += vec_ic2[ethercatoffset+1];
}
else{
continue;
}
if ((frame_nr%100000) == 0)
std::cout << " Frame " << frame_nr << std::endl;
file.seekg((frame_nr*increment) * sampleframe.sizeInFile() , std::ios::beg);
if (sampleframe.read(&file) == 0) //read the next frame and catch if returns error
{
std::cerr << " ### Hitdata: Frame " << frame_nr << " could not be read! Stopping." << std::endl;
file.close(); //read error, finish!
return 0;
}
for (int boardnumber = 0; boardnumber<4; boardnumber++){
board_b[boardnumber] = readboard(sampleframe,boardnumber);//a bit redundant but does some analysis
// std::cout << board_b[0].integratedsignalamp << std::endl;
if (boardnumber==0&&board_b[0].integratedsignalamp>1000 && board_b[0].maxchannel_amp>100.){
BPMbeamrecon_0 = beamreconstruction(board_b[0], 80.); // do the linear regression fit of the beam;
// std::cout << "doing regression" << std::endl;
}
else if (boardnumber==0) {BPMbeamrecon_0=BPMbeamrecon_Zeroed;}
if (boardnumber==1&&board_b[1].integratedsignalamp>1000 && board_b[1].maxchannel_amp>100.){
BPMbeamrecon_1 = beamreconstruction(board_b[1], 80.); // do the linear regression fit of the beam;
// std::cout << "doing regression" << std::endl;
}
else if (boardnumber==1) {BPMbeamrecon_1=BPMbeamrecon_Zeroed;}
if (boardnumber==2&&board_b[2].integratedsignalamp>1000 && board_b[2].maxchannel_amp>100.){
BPMbeamrecon_2 = beamreconstruction(board_b[2], 80.); // do the linear regression fit of the beam;
// std::cout << "doing regression" << std::endl;
}
else if (boardnumber==2) {BPMbeamrecon_2=BPMbeamrecon_Zeroed;}
if (boardnumber==3&&board_b[3].integratedsignalamp>1000 && board_b[3].maxchannel_amp>100.){
BPMbeamrecon_3 = beamreconstruction(board_b[3], 80.); // do the linear regression fit of the beam;
// std::cout << "doing regression" << std::endl;
}
else if (boardnumber==3) {BPMbeamrecon_3=BPMbeamrecon_Zeroed;}
}
// cout << "fill hist " << int(board_b[0].nrChannels) << endl;
for (int j = 0;j< board_b[0].nrChannels;j++){
if (board_b[0].maxchannel_amp>100.) TH2D_b0_signal_vs_channel->Fill(j, board_b[0].channel_amp[j]);
}
for (int j = 0;j< board_b[1].nrChannels;j++){
if (board_b[1].maxchannel_amp>100.) TH2D_b1_signal_vs_channel->Fill(j, board_b[1].channel_amp[j]);
}
for (int j = 0;j< board_b[2].nrChannels;j++){
if (board_b[2].maxchannel_amp>100.) TH2D_b2_signal_vs_channel->Fill(j, board_b[2].channel_amp[j]);
}
for (int j = 0;j< board_b[3].nrChannels;j++){
if (board_b[3].maxchannel_amp>100.) TH2D_b3_signal_vs_channel->Fill(j, board_b[3].channel_amp[j]);
}
///find timestamps in sma_state data for the BPM
analog_in2 = board_b[3].sma_state;
// cout << current_pos_in_samples << ": " << intime << " " << analog_in2 << " ";
current_pos_in_samples = eventID ;
sample_buffer.erase(sample_buffer.begin());//remove the first bit in the sample_buffer, and then add the new value at the end.
sample_buffer.push_back(analog_in2);
last_nbelowthreshold = nbelowthreshold;
last_nabovethreshold = nabovethreshold;
//look for 50 ms gap between transmissions (1000 * 0.05ms frames in ethercat IC) then process the sample buffer
if (analog_in2<threshold) {
nbelowthreshold++;
nabovethreshold=0;
}
else {
nbelowthreshold=0; //reset search window counter if you go above threshold again without reaching the 50ms gap
nabovethreshold++;
}
// cout <<" below: " << nbelowthreshold << " above: " << nabovethreshold << endl;
// if (last_nbelowthreshold>nbelowthreshold) cout << "last below " << last_nbelowthreshold << endl;
// if (last_nabovethreshold>nabovethreshold) cout << "last above " << last_nabovethreshold << endl;
if (nabovethreshold>=samples_per_50ms+samples_per_bit){ // last stop bit + 50ms above thresholds
nabovethreshold=0; //reset search window counter
transmission_start_in_samples = current_pos_in_samples - samples_per_50ms - 4*10 * samples_per_bit;
//%if the gap was found, proceed to finding start and stop bits in sample buffer...
// cout << transmission_start_in_samples << ": sample buffer[" << sample_buffer.size() << "]" << endl;
// for (auto i: sample_buffer) std::cout << i << " ";
// cout << endl;
// %initialize byte counter
//fill with the middle values where the bits should be
byte_data.clear();
bit_pattern_to_test.clear();
// cout << transmission_start_in_samples << ": bit pattern[40] ";
int count=0;
for (int byte_nr =0; byte_nr<4; byte_nr++){
for (int bit_nr =0; bit_nr<10; bit_nr++){
bit_pattern_to_test.push_back( sample_buffer[ floor((bit_nr + byte_nr*10 + 0.5) *samples_per_bit) ] >=threshold ? 1 : 0); //1 if greater than threshold else 0
// std::cout << bit_pattern_to_test[count] << " ";
count++;
} //10 bits filled
// cout << endl;
} //4 bytes filled
//check that the stop and start bits are in the correct place
if (bit_pattern_to_test[0]==0 && bit_pattern_to_test[9]==1 &&
bit_pattern_to_test[10]==0 && bit_pattern_to_test[19]==1 &&
bit_pattern_to_test[20]==0 && bit_pattern_to_test[29]==1 &&
bit_pattern_to_test[30]==0 && bit_pattern_to_test[39]==1){
//then
// cout << "Timestamp found at entry " << transmission_start_in_samples << endl;
//fill byte
for (int jbyte_nr =0; jbyte_nr<4; jbyte_nr++){
byte_value = 0;
for (int jbit = 1; jbit< 9; jbit++){
byte_value+=bit_pattern_to_test[jbit+ 10*jbyte_nr] * bit_multipliers[jbit];
// cout << bit_pattern_to_test[jbit+ 10*jbyte_nr] << "*" << bit_multipliers[jbit] << "+";
}
// cout << "= "<< byte_value << " " << endl;;
byte_data.push_back(byte_value);
}
// cout << endl;
// %now calculate the result
block_nr++;
block_positions.push_back(transmission_start_in_samples);
block_value=0;
for (int jbyte = 0; jbyte< 4; jbyte++){
block_value+=byte_data[jbyte]*byte_multipliers[jbyte];
}
block_data.push_back(block_value);
if ( block_nr>1) {
// printf("Block %i at %1.1i: %f ms Delta=%f ms\n", block_nr, block_positions[block_nr-1], block_data[block_nr-1],block_data[block_nr-1]- block_data[block_nr-2]);
}
else {
// printf("Block %i at %1.1i: %f ms\n", block_nr, block_positions[block_nr-1], block_data[block_nr-1]);
}
// outfile << std::setprecision(11) << block_data[block_nr-1] << " " << block_positions[block_nr-1] << endl;
}
else{
cout << "Bad Block at entry " << transmission_start_in_samples << endl;
}
//no matter what , clear the sample buffer and try again.
sample_buffer.clear();
sample_buffer.assign(floor(4*10*samples_per_bit+samples_per_50ms),0);
}//end of beloww threshold for 50ms
// cout << "fill tree" << endl;
rootTree->Fill();
} //end of frame loop
outfile.close();
return 1;
}
void histograms(int fargc, char ** argv){
//open output root file
rootfilename = Form("%s/root/%s.root",argv[1],argv[2]);
rootFile = new TFile(rootfilename,"RECREATE");
if ( rootFile->IsOpen() ) {printf("ROOT file opened successfully\n");
}
else { printf("ROOT file failed to open. \n");}
rootTree = new TTree("t","HIT Data Root Tree");
rootTree ->Branch("BPMbeamrecon_0", &BPMbeamrecon_0, "Position/D:Focus:Peak:Rsqr:Skew:Kurtosis:Sum:n_channels/I");
rootTree ->Branch("BPMbeamrecon_1", &BPMbeamrecon_1, "Position/D:Focus:Peak:Rsqr:Skew:Kurtosis:Sum:n_channels/I");
rootTree ->Branch("BPMbeamrecon_2", &BPMbeamrecon_2, "Position/D:Focus:Peak:Rsqr:Skew:Kurtosis:Sum:n_channels/I");
rootTree ->Branch("BPMbeamrecon_3", &BPMbeamrecon_3, "Position/D:Focus:Peak:Rsqr:Skew:Kurtosis:Sum:n_channels/I");
// rootTree ->Branch("board_0", &board_b[0], "channel_amp[320]/D:channel_position[320]:avg_position:avg_width:integratedsignalamp:max_channel_amp:maxchannel/I:nrChannels:board_number:sma_state");
//rootTree ->Branch("board_1", &board_b[1], "channel_amp[320]/D:channel_position[320]:avg_position:avg_width:integratedsignalamp:max_channel_amp:maxchannel/I:nrChannels:board_number:sma_state");
//rootTree ->Branch("board_2", &board_b[2], "channel_amp[320]/D:channel_position[320]:avg_position:avg_width:integratedsignalamp:max_channel_amp:maxchannel/I:nrChannels:board_number:sma_state");
//rootTree ->Branch("board_3", &board_b[3], "channel_amp[320]/D:channel_position[320]:avg_position:avg_width:integratedsignalamp:max_channel_amp:maxchannel/I:nrChannels:board_number:sma_state");
rootTree ->Branch("ethercat",&ethercat,"ic1/D:ic2");
rootTree ->Branch("eventID",&eventID,"eventID/I");
TH2D_b0_signal_vs_channel = new TH2D("TH2D_b0_signal_vs_channel","TH2D_b0_signal_vs_channel",320,0,320,1200,-2000,20000);
TH2D_b1_signal_vs_channel = new TH2D("TH2D_b1_signal_vs_channel","TH2D_b1_signal_vs_channel",320,0,320,1200,-2000,20000);
TH2D_b2_signal_vs_channel = new TH2D("TH2D_b2_signal_vs_channel","TH2D_b2_signal_vs_channel",320,0,320,1200,-2000,20000);
TH2D_b3_signal_vs_channel = new TH2D("TH2D_b3_signal_vs_channel","TH2D_b3_signal_vs_channel",320,0,320,1200,-2000,20000);
}
//Function for average
double avg ( vector<Channel> v )
{
double return_value = 0.0;
int n = v.size();
for ( int i=0; i < n; i++)
{
return_value += v[i].chnumber;
}
return ( return_value / double(n));
}
//****************End of average funtion****************
//Function for variance
double variance ( vector<Channel> v , double mean )
{
double sum = 0.0;
double temp =0.0;
double var =0.0;
for ( int j =0; j < v.size(); j++)
{
temp = pow((v[j].chnumber - mean) , 2);
sum += temp;
}
return var = sum/double(v.size() -2);
}
//****************End of variance funtion****************
int set_background_v2(int start_frame, int max_frames){
std::cout << "Setting background levels." << std::endl;
for (int j = 0; j<320; j++){
for (int k = 0; k<4; k++){
board_b_bkg[k].channel_amp[j] = 0.;
}
}
//Read first record to find board configuration
Fullframe sampleframe;
file.seekg(start_frame * sampleframe.sizeInFile() , std::ios::beg);
if (sampleframe.read(&file) == 0) //read the next frame and catch if returns error
{
std::cerr << " ### Hitdata: First frame could not be read!" << std::endl;
file.close(); //read error, finish!
return 0;
}
//Read
// file.seekg(sampleframe.sizeInFile(), std::ios::beg);
for (int frame_nr = start_frame; frame_nr < max_frames; frame_nr++)
{
file.seekg(frame_nr * sampleframe.sizeInFile() , std::ios::beg);
if (sampleframe.read(&file) == 0) //read the next frame and catch if returns error
{
std::cerr << " ### Hitdata: Frame " << frame_nr << " could not be read!" << std::endl;
file.close(); //read error, finish!
return 0;
}
for (int boardnumber = 0; boardnumber<4; boardnumber++){
for (int j = 0; j<sampleframe.boards[boardnumber].nrChannels;j++){
board_b_bkg[boardnumber].channel_amp[j] += sampleframe.boards[boardnumber].data[j] / double(max_frames);
// std::cout << j << " " << board.channel_amp[j] << " " << dataptr->sensor_data[j] << std::endl;
}
}
}
std::cout << "Background set." << std::endl;
return 1;
}
bpm_frame_v2 readboard(Fullframe frame, int boardnumber){
bpm_frame_v2 board;
board.integratedsignalamp = 0.;
board.maxchannel_amp = 0.;
board.nrChannels = frame.boards[boardnumber].nrChannels;
board.board_number = boardnumber;
board.sma_state = frame.boards[boardnumber].syncframe.sma_state;
// file.seekg(boardnumber*sizeof(BufferData)+4*frame*sizeof(BufferData));
//file.read ((char*)dataptr ,sizeof(BufferData));
if (frame.boards[boardnumber].syncframe.device_nr==boardnumber){
// cout << "nrChannels" << frame.boards[boardnumber].nrChannels << endl;
for (int j = 0; j<frame.boards[boardnumber].nrChannels;j++){
//subtract the background from the data
board.channel_amp[j] = frame.boards[boardnumber].data[j] - board_b_bkg[boardnumber].channel_amp[j];
// std::cout << j << " " << board.channel_amp[j] << " " << frame.boards[boardnumber].data[j] << std::endl;
//sum the signal across channels
board.integratedsignalamp += board.channel_amp[j];
//find the peak channel
if (board.channel_amp[j]> board.maxchannel_amp) {
board.maxchannel = j;
board.maxchannel_amp = board.channel_amp[j];
// cout << maxchannel_b0 << " " <<maxchannelamp_b0 << endl;
}
//set the channel positions in mm
board.channel_position[j] = 0.8*j + 0.2*(floor(j/64));
//cout << board.channel_position[j] << " " << j << " " << (floor(j/64)) << endl;
}
}
else std::cerr << "Error reading board data." << std::endl;
return board;
}
beamRecon beamreconstruction(bpm_frame_v2 frametoanalyse, double threshold = 30.){
///////////////// linear regression using Integration by parts of gaussian function.
beamRecon beam;
double SumT, SumS, SumS2, SumST, SumT2, SumY, SumYS, SumYT, sigmaABC, muABC,p,c, b, b_den, b_num, SumYYP, SumYYM, MeanY;
TMatrixD M1(3,3);
TMatrixD M1inv(3,3);
TVectorD ABC(3);
TVectorD M2(3);
vector<double> signal_list;
vector<double> channel_list;
channel_list.clear();
SumY = 0.;
SumS = 0.;
SumT = 0.;
SumS2 = 0.;
SumST = 0.;
SumT2 = 0.;
SumYS = 0.;
SumYT = 0.;
b_den = 0.;
b_num = 0.;
b = 0.;
p = 0.;
c = 0.;
SumYYM = 0.;
SumYYP = 0.;
MeanY = 0.;
// const int array_length = sizeof(frametoanalyse.channel_amp)/sizeof(double);
const int array_length = frametoanalyse.nrChannels ;
vector<Channel> channel_reducedlist; //for anomaly detection
vector<Channel> channel_reducedlistcopy; //for anomaly detection
//hardcoded pixels to mask for this data set.
const int arr_0[] = {139 };
//const int arr_1[] = {};
const int arr_2[] = { 11,12 };
const int arr_3[] = { 1, 2, };
vector<int> masked_channels[4];
masked_channels[0].assign( arr_0, arr_0 + sizeof(arr_0) / sizeof(*arr_0) );
// masked_channels[0].assign( arr_0, arr_0 + sizeof(arr_0) / sizeof(*arr_0) );
masked_channels[2].assign( arr_2, arr_2 + sizeof(arr_2) / sizeof(*arr_2) );
masked_channels[3].assign( arr_3, arr_3 + sizeof(arr_3) / sizeof(*arr_3) );
Channel tmp;
int temp_lastneighbour= -128;
for (int i = 0; i< array_length; i++){
if (count( masked_channels[frametoanalyse.board_number].begin(), masked_channels[frametoanalyse.board_number].end(), i)) continue; //check masked pixel list, and do not add it to the list of channels for analysis.
if (frametoanalyse.channel_amp[i]>=threshold) {
// cout << "ch: " << i << endl;
// signal_list.push_back(frametoanalyse.channel_amp[i]);
// channel_list.push_back(frametoanalyse.channel_position[i]);
tmp.amplitude = frametoanalyse.channel_amp[i];
tmp.position = frametoanalyse.channel_position[i];
tmp.chnumber = i;
tmp.last_neighbour = temp_lastneighbour;
temp_lastneighbour = i ;
channel_reducedlist.push_back(tmp);
if (channel_reducedlist.size()>1){
channel_reducedlist[channel_reducedlist.size() - 2].next_neighbour = i;
}
}
}
//anomaly detection
//remove channels without neighbours.
for (int i = 0; i<channel_reducedlist.size() ;i++){
if (abs(channel_reducedlist[i].chnumber - channel_reducedlist[i].last_neighbour)<=1 || abs(channel_reducedlist[i].chnumber-channel_reducedlist[i].next_neighbour)<=1 ){
channel_reducedlistcopy.push_back(channel_reducedlist[i]);
// cout << channel_reducedlist[i].chnumber << " " << channel_reducedlist[i].last_neighbour << " " << channel_reducedlist[i].next_neighbour << endl;
}
}
// channel_reducedlist.clear();//empty list to reuse it.
double cluster_average;
double cluster_variance;
if(channel_reducedlistcopy.size()>2){
cluster_average = avg(channel_reducedlistcopy);
cluster_variance = variance(channel_reducedlistcopy, cluster_average);
// cout << cluster_average << " " << cluster_variance << endl;
}
//include all channels +/- 2*variance of the main cluster
for (int i = 0; i< array_length; i++){
if (abs(i-cluster_average)<2*cluster_variance){
signal_list.push_back(frametoanalyse.channel_amp[i]);
channel_list.push_back(frametoanalyse.channel_position[i]);
}
}
// sort(channel_reducedlist.begin(),channel_reducedlist.end(),CompareChannels);
const int vector_length = channel_list.size();
beam.n_channels = vector_length;
beam.Sum = std::accumulate(signal_list.begin(), signal_list.end(),0);
if (vector_length<=3) return beam;
double S[vector_length];
double T[vector_length];
for(int k=0; k<vector_length;k++){
if (k==0){
S[k]=0.; T[k]=0.;
}
else{
S[k] = S[k-1]+0.5*( signal_list[k] + signal_list[k-1] ) * ( channel_list[k] - channel_list[k-1] );
T[k] = T[k-1]+0.5*( channel_list[k] * signal_list[k] + channel_list[k-1] * signal_list[k-1] ) * ( channel_list[k] - channel_list[k-1] );
}
// cout << S[k] << " " << T[k] << endl;
SumS += S[k]; SumT += T[k];
SumY += signal_list[k];
SumS2 += S[k]*S[k]; SumST += S[k]*T[k]; SumT2 += T[k]*T[k];
SumYS += signal_list[k]*S[k];
SumYT += signal_list[k]*T[k];
MeanY+=signal_list[k];
}
MeanY/=vector_length;
M1(0,0) = SumT2; M1(0,1) = SumST; M1(0,2) = SumT; M1(1,0) = SumST; M1(1,1) = SumS2;
M1(1,2) = SumS; M1(2,0) = SumT; M1(2,1) = SumS;
M1(2,2) = vector_length;
M2(0) = SumYT; M2(1) = SumYS; M2(2) = SumY;
M1inv = M1.Invert(); ABC = M1inv * M2;
//calculate b,p,c ---> y = b*exp(-p*(x-c)*(x-c))
p = -ABC(0)/2.; c = -ABC(1)/ABC(0);
for(int k=0; k<vector_length;k++){
b_num += exp(-p*(channel_list[k]-c)*(channel_list[k]-c)) * signal_list[k];
b_den += exp(-2*p*(channel_list[k]-c)*(channel_list[k]-c));
}
b = b_num/b_den;
for(int k=0; k<vector_length;k++){
SumYYM+= (signal_list[k]-MeanY)*(signal_list[k]-MeanY);
SumYYP+= (b*exp(-p*(channel_list[k]-c)*(channel_list[k]-c)) - MeanY )*(b*exp(-p*(channel_list[k]-c)*( channel_list[k]-c)) - MeanY );
}
// cout << "R-squared = " << SumYYP/SumYYM << endl;
beam.Position = -ABC(1)/ ABC(0);
beam.Focus = 2.3548/sqrt(2*p);
beam.Peak = b;
beam.Rsqr = SumYYP/SumYYM;
beam.Skew = gsl_stats_wskew_m_sd(&signal_list[0],1,&channel_list[0],1,vector_length,beam.Position,beam.Focus/2.3548); //skewness (symmetry)
beam.Kurtosis = gsl_stats_wkurtosis_m_sd(&signal_list[0],1,&channel_list[0],1,vector_length,beam.Position,beam.Focus/2.3548); //excess kurtosis (well behaved tails)
return beam;
}