260 lines
7.5 KiB
C
260 lines
7.5 KiB
C
|
#define hit_analyse_cxx
|
||
|
#include "hit_analyse.h"
|
||
|
|
||
|
int main(int argc, char **argv){
|
||
|
|
||
|
opendatafiles(argc, argv);
|
||
|
histograms(argc, argv);
|
||
|
analyse(argc, argv);
|
||
|
closedatafiles();
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int opendatafiles(int argc, char ** argv){
|
||
|
if (argc>2){
|
||
|
//open bpm data file
|
||
|
filename = Form("%s%s.dat",argv[1],argv[2]);
|
||
|
file.open(filename, ifstream::in | ifstream::binary);
|
||
|
fileframesize = getFileSize(filename) / ( 4*sizeof(BufferData) );
|
||
|
if (fileframesize>0){ std::cout << "Number of frames in data file: " << fileframesize << std::endl;}
|
||
|
else { std:cout << "BPM .dat dile not found." << endl; return -1;}
|
||
|
|
||
|
//bpm data timestamps
|
||
|
timestampfilename = Form("%s%s_timestamp.csv",argv[1],argv[2]);
|
||
|
timestampfile.open(timestampfilename, ifstream::in);
|
||
|
if (!timestampfile.is_open()){
|
||
|
printf("timestamp.csv did not open.\n");
|
||
|
ethercat = false;
|
||
|
//return -1; //file could not be opened
|
||
|
}
|
||
|
|
||
|
|
||
|
//open ethercat file
|
||
|
if (argc>3){
|
||
|
ethercatfile = argv[3];
|
||
|
tree2 = new TTree("t2", "t2");
|
||
|
std::cout << " Loading Ethercat data." << std::endl;
|
||
|
tree2->ReadFile(ethercatfile, "RELTIME2/D:IC1/D:MW1_POSX/D:MW1_POSY/D:ANALOG_IN1/D:ENERGY_INDEX/D:INTENSITY_INDEX/D:ION-SORT/D:TIME2/D", '\t');
|
||
|
std::cout << "Ethercat data loaded." << std::endl;
|
||
|
tree2->Print();
|
||
|
}
|
||
|
|
||
|
//open amplitude offset correction file
|
||
|
if (argc>4){
|
||
|
offsetfilename = Form("%s",argv[4]);
|
||
|
offsetfile.open(offsetfilename, ifstream::in);
|
||
|
if (!offsetfile.is_open()){
|
||
|
printf("no offset.txt file found\n");
|
||
|
// return -1; //file could not be opened
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
dataptr = new BufferData();
|
||
|
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
int closedatafiles(int argc, char ** argv){
|
||
|
|
||
|
if (file.is_open()) file.close();
|
||
|
if (timestampfile.is_open()) timestampfile.close();
|
||
|
if (offsetfile.is_open()) offsetfile.close();
|
||
|
|
||
|
rootFile->Write();
|
||
|
rootFile->Close();
|
||
|
}
|
||
|
|
||
|
|
||
|
int analyse(int argc, char **argv)
|
||
|
{
|
||
|
int bkg_frames = 1000;
|
||
|
set_background_v1(bkg_frames);
|
||
|
|
||
|
for (int frame = 0; frame< fileframesize - bkg_frames; frame++ ){
|
||
|
if (frame%10000==0) std::cout << "Frame: " << frame << " (" <<double(frame)/double(fileframesize)*100.0 << "%)" << std::endl;
|
||
|
|
||
|
//must read all boards to keep read correct position in data file
|
||
|
for (int boardnumber = 0; boardnumber<4;boardnumber++){
|
||
|
board_b[boardnumber] = readboard(frame, boardnumber); //read in the frame
|
||
|
BPMbeamrecon[boardnumber] = beamreconstruction(board_b[boardnumber], 50.); // do the linear regression fit of the beam;
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
bpm_frame_v1 readboard(int frame, int boardnumber){
|
||
|
|
||
|
bpm_frame_v1 board;
|
||
|
board.integratedsignalamp = 0.;
|
||
|
|
||
|
file.seekg(boardnumber*sizeof(BufferData)+4*frame*sizeof(BufferData));
|
||
|
file.read ((char*)dataptr ,sizeof(BufferData));
|
||
|
if (dataptr->sync_frame.device_nr==boardnumber){
|
||
|
for (int j = 1; j<128;j++){
|
||
|
//subtract the background from the data
|
||
|
board.channel_amp[j] = dataptr->sensor_data[j] - board_b_bkg[boardnumber].channel_amp[j];
|
||
|
// std::cout << j << " " << board.channel_amp[j] << " " << dataptr->sensor_data[j] << std::endl;
|
||
|
|
||
|
//sum the signal across channels
|
||
|
board.integratedsignalamp += board.channel_amp[j];
|
||
|
|
||
|
//find the peak channel
|
||
|
if (board.channel_amp[j]> board.maxchannel_amp) {
|
||
|
board.maxchannel = j;
|
||
|
board.maxchannel_amp = board.channel_amp[j];
|
||
|
// cout << maxchannel_b0 << " " <<maxchannelamp_b0 << endl;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else std::cerr << "Error reading board data." << std::endl;
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
return board;
|
||
|
}
|
||
|
|
||
|
void histograms(){
|
||
|
|
||
|
//open output root file
|
||
|
rootfilename = Form("%s/root/%s.root",argv[1],argv[2]);
|
||
|
rootFile = new TFile(rootfilename,"RECREATE");
|
||
|
if ( rootFile->IsOpen() ) printf("ROOT file opened successfully\n");
|
||
|
}
|
||
|
else return -1;
|
||
|
TTree *rootTree = new TTree("t","HIT Data Root Tree");
|
||
|
|
||
|
}
|
||
|
|
||
|
void set_background_v1(int max_frames){
|
||
|
|
||
|
for (int j = 0; j<128; j++){
|
||
|
for (int k = 0; k<4; k++){
|
||
|
board_b_bkg[k].channel_amp[j] = 0.;
|
||
|
}
|
||
|
}
|
||
|
for (int i = 0;i<max_frames;i++){
|
||
|
//must read all boards to keep read correct position in data file
|
||
|
for (int boardnumber = 0; boardnumber<4; boardnumber++){
|
||
|
|
||
|
file.seekg(boardnumber*sizeof(BufferData)+4*i*sizeof(BufferData));
|
||
|
file.read ((char*)dataptr ,sizeof(BufferData));
|
||
|
if (dataptr->sync_frame.device_nr==boardnumber){
|
||
|
for (int j = 1; j<128;j++){
|
||
|
board_b_bkg[boardnumber].channel_amp[j] += double(dataptr->sensor_data[j]) / double(max_frames);
|
||
|
// std::cout << j << " " << board.channel_amp[j] << " " << dataptr->sensor_data[j] << std::endl;
|
||
|
}
|
||
|
}
|
||
|
else std::cerr << "Error reading board data." << std::endl;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
beamRecon beamreconstruction(bpm_frame_v1 frametoanalyse, double threshold = 50.){
|
||
|
|
||
|
///////////////// linear regression using Integration by parts of gaussian function.
|
||
|
|
||
|
beamRecon beam;
|
||
|
double SumT, SumS, SumS2, SumST, SumT2, SumY, SumYS, SumYT, sigmaABC, muABC,p,c, b, b_den, b_num, SumYYP, SumYYM, MeanY;
|
||
|
TMatrixD M1(3,3);
|
||
|
TMatrixD M1inv(3,3);
|
||
|
TVectorD ABC(3);
|
||
|
TVectorD M2(3);
|
||
|
vector<double> signal_list;
|
||
|
vector<double> channel_list;
|
||
|
|
||
|
SumY = 0.;
|
||
|
SumS = 0.;
|
||
|
SumT = 0.;
|
||
|
SumS2 = 0.;
|
||
|
SumST = 0.;
|
||
|
SumT2 = 0.;
|
||
|
SumYS = 0.;
|
||
|
SumYT = 0.;
|
||
|
b_den = 0.;
|
||
|
b_num = 0.;
|
||
|
b = 0.;
|
||
|
p = 0.;
|
||
|
c = 0.;
|
||
|
SumYYM = 0.;
|
||
|
SumYYP = 0.;
|
||
|
MeanY = 0.;
|
||
|
|
||
|
|
||
|
// const int array_length = sizeof(frametoanalyse.channel_amp)/sizeof(double);
|
||
|
const int array_length = 128;
|
||
|
for (int i = 0; i< array_length; i++){
|
||
|
if (frametoanalyse.channel_amp[i]>=threshold) {
|
||
|
signal_list.push_back(frametoanalyse.channel_amp[i]);
|
||
|
channel_list.push_back(i);//correct for actual detector position
|
||
|
}
|
||
|
}
|
||
|
const int vector_length = channel_list.size();
|
||
|
if (vector_length<=3) return beam;
|
||
|
|
||
|
double S[vector_length];
|
||
|
double T[vector_length];
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
for(int k=0; k<vector_length;k++){
|
||
|
if (k==0){
|
||
|
S[k]=0.; T[k]=0.;
|
||
|
}
|
||
|
else{
|
||
|
S[k] = S[k-1]+0.5*( signal_list[k] + signal_list[k-1] ) * ( channel_list[k] - channel_list[k-1] );
|
||
|
T[k] = T[k-1]+0.5*( channel_list[k] * signal_list[k] + channel_list[k-1] * signal_list[k-1] ) * ( channel_list[k] - channel_list[k-1] );
|
||
|
}
|
||
|
// cout << S[k] << " " << T[k] << endl;
|
||
|
SumS += S[k]; SumT += T[k];
|
||
|
SumY += signal_list[k];
|
||
|
SumS2 += S[k]*S[k]; SumST += S[k]*T[k]; SumT2 += T[k]*T[k];
|
||
|
SumYS += signal_list[k]*S[k];
|
||
|
SumYT += signal_list[k]*T[k];
|
||
|
MeanY+=signal_list[k];
|
||
|
}
|
||
|
MeanY/=vector_length;
|
||
|
|
||
|
|
||
|
M1(0,0) = SumT2; M1(0,1) = SumST; M1(0,2) = SumT; M1(1,0) = SumST; M1(1,1) = SumS2;
|
||
|
M1(1,2) = SumS; M1(2,0) = SumT; M1(2,1) = SumS;
|
||
|
M1(2,2) = vector_length;
|
||
|
|
||
|
M2(0) = SumYT; M2(1) = SumYS; M2(2) = SumY;
|
||
|
M1inv = M1.Invert(); ABC = M1inv * M2;
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
//calculate b,p,c ---> y = b*exp(-p*(x-c)*(x-c))
|
||
|
p = -ABC(0)/2.; c = -ABC(1)/ABC(0);
|
||
|
|
||
|
for(int k=0; k<vector_length;k++){
|
||
|
b_num += exp(-p*(channel_list[k]-c)*(channel_list[k]-c)) * signal_list[k];
|
||
|
b_den += exp(-2*p*(channel_list[k]-c)*(channel_list[k]-c));
|
||
|
|
||
|
}
|
||
|
b = b_num/b_den;
|
||
|
|
||
|
beam.Position = -ABC(1)/ ABC(0);
|
||
|
beam.Focus = 2.3548/sqrt(2*p);
|
||
|
beam.Peak = b;
|
||
|
beam.Rsqr = SumYYP/SumYYM;
|
||
|
beam.Skew = gsl_stats_wskew_m_sd(&signal_list[0],1,&channel_list[0],1,vector_length,beam.Position,beam.Focus/2.3548); //skewness (symmetry)
|
||
|
beam.Kurtosis = gsl_stats_wkurtosis_m_sd(&signal_list[0],1,&channel_list[0],1,vector_length,beam.Position,beam.Focus/2.3548); //excess kurtosis (well behaved tails)
|
||
|
|
||
|
return beam;
|
||
|
|
||
|
}
|
||
|
|