2021-01-25 12:39:07 +01:00
# define hit_analyse_v2_cxx
# include "hit_analyse_v2.h"
int main ( int argc , char * * argv ) {
opendatafiles ( argc , argv ) ;
histograms ( argc , argv ) ;
analyse ( argc , argv ) ;
closedatafiles ( ) ;
return 0 ;
}
int opendatafiles ( int argc , char * * argv ) {
if ( argc > 2 ) {
//open bpm data file
filename = Form ( " %s%s.da2 " , argv [ 1 ] , argv [ 2 ] ) ;
file . open ( filename , ifstream : : in | ifstream : : binary ) ;
if ( ! file . is_open ( ) )
{
std : : cerr < < " ### Hitdata: File could not be opened! " < < filename < < std : : endl ;
return 0 ; //file could not be opened
}
else { std : : cout < < filename < < " opened successfully. " < < std : : endl ; }
}
string visualize_check = argv [ 5 ] ; //plot data
if ( visualize_check = = " vis_true " ) { visualize = true ; }
else { visualize = false ; }
return 1 ;
}
int closedatafiles ( ) {
if ( file . is_open ( ) ) file . close ( ) ;
// if (timestampfile.is_open()) timestampfile.close();
//if (offsetfile.is_open()) offsetfile.close();
rootFile - > Write ( ) ;
rootFile - > Close ( ) ;
}
int analyse ( int argc , char * * argv )
{
int first_frame = 0 ; // 1440000
int nr_frames = - 1 ;
int increment = 1 ;
//Read first record to find board configuration
Fullframe sampleframe ;
if ( sampleframe . read ( & file ) = = 0 )
{
std : : cerr < < " ### Hitdata: First frame could not be read! " < < std : : endl ;
file . close ( ) ;
return 0 ;
}
else {
std : : cout < < " Sample frame size (bytes): " < < sampleframe . sizeInFile ( ) < < std : : endl ;
}
//Check file size
file . seekg ( 0 , std : : ios : : beg ) ;
std : : streamsize fsize = file . tellg ( ) ;
file . seekg ( 0 , std : : ios : : end ) ;
fsize = file . tellg ( ) - fsize ;
//Determine real frames to read
unsigned int max_frames = fsize / sampleframe . sizeInFile ( ) ;
if ( ( max_frames = = - 1 ) | | ( max_frames < nr_frames ) )
nr_frames = max_frames ;
std : : cout < < " Hitdata: Nr frames to be read: " < < nr_frames < < std : : endl ;
///set the background levels from first N events
int bkg_frames = 1000 ;
if ( set_background_v2 ( 0 , bkg_frames ) = = 0 ) return 0 ;
BPMbeamrecon_Zeroed . Position = - 128. ;
BPMbeamrecon_Zeroed . Focus = - 1. ;
BPMbeamrecon_Zeroed . Peak = - 1. ;
BPMbeamrecon_Zeroed . Position = - 128. ;
BPMbeamrecon_Zeroed . Rsqr = - 1. ;
BPMbeamrecon_Zeroed . Skew = - 128. ;
BPMbeamrecon_Zeroed . Position = - 128. ;
BPMbeamrecon_Zeroed . Sum = 0. ;
BPMbeamrecon_Zeroed . n_channels = 0 ;
//read board
//Read!
std : : cout < < " Reading data starting from frame: " < < first_frame < < std : : endl ;
file . seekg ( first_frame * sampleframe . sizeInFile ( ) , std : : ios : : beg ) ;
for ( int frame_nr = first_frame ; frame_nr < nr_frames ; frame_nr + + )
{
eventID = frame_nr ;
if ( ( frame_nr % 100000 ) = = 0 )
std : : cout < < " Frame " < < frame_nr < < std : : endl ;
file . seekg ( ( frame_nr * increment ) * sampleframe . sizeInFile ( ) , std : : ios : : beg ) ;
if ( sampleframe . read ( & file ) = = 0 ) //read the next frame and catch if returns error
{
std : : cerr < < " ### Hitdata: Frame " < < frame_nr < < " could not be read! Stopping. " < < std : : endl ;
file . close ( ) ; //read error, finish!
return 0 ;
}
for ( int boardnumber = 0 ; boardnumber < 4 ; boardnumber + + ) {
board_b [ boardnumber ] = readboard ( sampleframe , boardnumber ) ; //a bit redundant but does some analysis
// std::cout << board_b[0].integratedsignalamp << std::endl;
if ( boardnumber = = 0 & & board_b [ 0 ] . integratedsignalamp > 1000 & & board_b [ 0 ] . maxchannel_amp > 100. ) {
BPMbeamrecon_0 = beamreconstruction ( board_b [ 0 ] , 80. ) ; // do the linear regression fit of the beam;
// std::cout << "doing regression" << std::endl;
}
else if ( boardnumber = = 0 ) { BPMbeamrecon_0 = BPMbeamrecon_Zeroed ; }
if ( boardnumber = = 1 & & board_b [ 1 ] . integratedsignalamp > 1000 & & board_b [ 1 ] . maxchannel_amp > 100. ) {
BPMbeamrecon_1 = beamreconstruction ( board_b [ 1 ] , 80. ) ; // do the linear regression fit of the beam;
// std::cout << "doing regression" << std::endl;
}
else if ( boardnumber = = 1 ) { BPMbeamrecon_1 = BPMbeamrecon_Zeroed ; }
if ( boardnumber = = 2 & & board_b [ 2 ] . integratedsignalamp > 1000 & & board_b [ 2 ] . maxchannel_amp > 100. ) {
BPMbeamrecon_2 = beamreconstruction ( board_b [ 2 ] , 80. ) ; // do the linear regression fit of the beam;
// std::cout << "doing regression" << std::endl;
}
else if ( boardnumber = = 2 ) { BPMbeamrecon_2 = BPMbeamrecon_Zeroed ; }
if ( boardnumber = = 3 & & board_b [ 3 ] . integratedsignalamp > 1000 & & board_b [ 3 ] . maxchannel_amp > 100. ) {
BPMbeamrecon_3 = beamreconstruction ( board_b [ 3 ] , 80. ) ; // do the linear regression fit of the beam;
// std::cout << "doing regression" << std::endl;
}
else if ( boardnumber = = 3 ) { BPMbeamrecon_3 = BPMbeamrecon_Zeroed ; }
}
2021-02-08 17:58:07 +01:00
// cout << "fill hist " << int(board_b[0].nrChannels) << endl;
for ( int j = 0 ; j < board_b [ 0 ] . nrChannels ; j + + ) {
2021-01-25 12:39:07 +01:00
if ( board_b [ 0 ] . maxchannel_amp > 100. ) TH2D_b0_signal_vs_channel - > Fill ( j , board_b [ 0 ] . channel_amp [ j ] ) ;
2021-02-08 17:58:07 +01:00
}
for ( int j = 0 ; j < board_b [ 1 ] . nrChannels ; j + + ) {
2021-01-25 12:39:07 +01:00
if ( board_b [ 1 ] . maxchannel_amp > 100. ) TH2D_b1_signal_vs_channel - > Fill ( j , board_b [ 1 ] . channel_amp [ j ] ) ;
2021-02-08 17:58:07 +01:00
}
for ( int j = 0 ; j < board_b [ 2 ] . nrChannels ; j + + ) {
2021-01-25 12:39:07 +01:00
if ( board_b [ 2 ] . maxchannel_amp > 100. ) TH2D_b2_signal_vs_channel - > Fill ( j , board_b [ 2 ] . channel_amp [ j ] ) ;
2021-02-08 17:58:07 +01:00
}
for ( int j = 0 ; j < board_b [ 3 ] . nrChannels ; j + + ) {
2021-01-25 12:39:07 +01:00
if ( board_b [ 3 ] . maxchannel_amp > 100. ) TH2D_b3_signal_vs_channel - > Fill ( j , board_b [ 3 ] . channel_amp [ j ] ) ;
}
2021-02-08 17:58:07 +01:00
// cout << "fill tree" << endl;
2021-01-25 12:39:07 +01:00
rootTree - > Fill ( ) ;
}
return 1 ;
}
void histograms ( int fargc , char * * argv ) {
//open output root file
rootfilename = Form ( " %s/root/%s.root " , argv [ 1 ] , argv [ 2 ] ) ;
rootFile = new TFile ( rootfilename , " RECREATE " ) ;
if ( rootFile - > IsOpen ( ) ) { printf ( " ROOT file opened successfully \n " ) ;
}
else { printf ( " ROOT file failed to open. \n " ) ; }
rootTree = new TTree ( " t " , " HIT Data Root Tree " ) ;
rootTree - > Branch ( " BPMbeamrecon_0 " , & BPMbeamrecon_0 , " Position/D:Focus:Peak:Rsqr:Skew:Kurtosis:Sum:n_channels/I " ) ;
rootTree - > Branch ( " BPMbeamrecon_1 " , & BPMbeamrecon_1 , " Position/D:Focus:Peak:Rsqr:Skew:Kurtosis:Sum:n_channels/I " ) ;
rootTree - > Branch ( " BPMbeamrecon_2 " , & BPMbeamrecon_2 , " Position/D:Focus:Peak:Rsqr:Skew:Kurtosis:Sum:n_channels/I " ) ;
rootTree - > Branch ( " BPMbeamrecon_3 " , & BPMbeamrecon_3 , " Position/D:Focus:Peak:Rsqr:Skew:Kurtosis:Sum:n_channels/I " ) ;
rootTree - > Branch ( " eventID " , & eventID , " eventID/I " ) ;
TH2D_b0_signal_vs_channel = new TH2D ( " TH2D_b0_signal_vs_channel " , " TH2D_b0_signal_vs_channel " , 320 , 0 , 320 , 1200 , - 2000 , 20000 ) ;
TH2D_b1_signal_vs_channel = new TH2D ( " TH2D_b1_signal_vs_channel " , " TH2D_b1_signal_vs_channel " , 320 , 0 , 320 , 1200 , - 2000 , 20000 ) ;
TH2D_b2_signal_vs_channel = new TH2D ( " TH2D_b2_signal_vs_channel " , " TH2D_b2_signal_vs_channel " , 320 , 0 , 320 , 1200 , - 2000 , 20000 ) ;
TH2D_b3_signal_vs_channel = new TH2D ( " TH2D_b3_signal_vs_channel " , " TH2D_b3_signal_vs_channel " , 320 , 0 , 320 , 1200 , - 2000 , 20000 ) ;
}
//Function for average
double avg ( vector < Channel > v )
{
double return_value = 0.0 ;
int n = v . size ( ) ;
for ( int i = 0 ; i < n ; i + + )
{
return_value + = v [ i ] . chnumber ;
}
return ( return_value / double ( n ) ) ;
}
//****************End of average funtion****************
//Function for variance
double variance ( vector < Channel > v , double mean )
{
double sum = 0.0 ;
double temp = 0.0 ;
double var = 0.0 ;
for ( int j = 0 ; j < v . size ( ) ; j + + )
{
temp = pow ( ( v [ j ] . chnumber - mean ) , 2 ) ;
sum + = temp ;
}
return var = sum / double ( v . size ( ) - 2 ) ;
}
//****************End of variance funtion****************
int set_background_v2 ( int start_frame , int max_frames ) {
std : : cout < < " Setting background levels. " < < std : : endl ;
for ( int j = 0 ; j < 320 ; j + + ) {
for ( int k = 0 ; k < 4 ; k + + ) {
board_b_bkg [ k ] . channel_amp [ j ] = 0. ;
}
}
//Read first record to find board configuration
Fullframe sampleframe ;
2021-02-08 17:58:07 +01:00
file . seekg ( start_frame * sampleframe . sizeInFile ( ) , std : : ios : : beg ) ;
if ( sampleframe . read ( & file ) = = 0 ) //read the next frame and catch if returns error
{
std : : cerr < < " ### Hitdata: First frame could not be read! " < < std : : endl ;
file . close ( ) ; //read error, finish!
return 0 ;
}
2021-01-25 12:39:07 +01:00
//Read
// file.seekg(sampleframe.sizeInFile(), std::ios::beg);
for ( int frame_nr = start_frame ; frame_nr < max_frames ; frame_nr + + )
{
file . seekg ( frame_nr * sampleframe . sizeInFile ( ) , std : : ios : : beg ) ;
if ( sampleframe . read ( & file ) = = 0 ) //read the next frame and catch if returns error
{
std : : cerr < < " ### Hitdata: Frame " < < frame_nr < < " could not be read! " < < std : : endl ;
file . close ( ) ; //read error, finish!
return 0 ;
}
for ( int boardnumber = 0 ; boardnumber < 4 ; boardnumber + + ) {
2021-02-08 17:58:07 +01:00
2021-01-25 12:39:07 +01:00
for ( int j = 0 ; j < sampleframe . boards [ boardnumber ] . nrChannels ; j + + ) {
board_b_bkg [ boardnumber ] . channel_amp [ j ] + = sampleframe . boards [ boardnumber ] . data [ j ] / double ( max_frames ) ;
// std::cout << j << " " << board.channel_amp[j] << " " << dataptr->sensor_data[j] << std::endl;
}
}
}
std : : cout < < " Background set. " < < std : : endl ;
return 1 ;
}
bpm_frame_v2 readboard ( Fullframe frame , int boardnumber ) {
bpm_frame_v2 board ;
board . integratedsignalamp = 0. ;
board . maxchannel_amp = 0. ;
2021-02-08 17:58:07 +01:00
board . nrChannels = frame . boards [ boardnumber ] . nrChannels ;
board . board_number = boardnumber ;
2021-01-25 12:39:07 +01:00
// file.seekg(boardnumber*sizeof(BufferData)+4*frame*sizeof(BufferData));
//file.read ((char*)dataptr ,sizeof(BufferData));
if ( frame . boards [ boardnumber ] . syncframe . device_nr = = boardnumber ) {
2021-02-08 17:58:07 +01:00
// cout << "nrChannels" << frame.boards[boardnumber].nrChannels << endl;
2021-01-25 12:39:07 +01:00
for ( int j = 0 ; j < frame . boards [ boardnumber ] . nrChannels ; j + + ) {
//subtract the background from the data
2021-02-08 17:58:07 +01:00
board . channel_amp [ j ] = frame . boards [ boardnumber ] . data [ j ] - board_b_bkg [ boardnumber ] . channel_amp [ j ] ;
2021-01-25 12:39:07 +01:00
// std::cout << j << " " << board.channel_amp[j] << " " << frame.boards[boardnumber].data[j] << std::endl;
2021-02-08 17:58:07 +01:00
2021-01-25 12:39:07 +01:00
//sum the signal across channels
board . integratedsignalamp + = board . channel_amp [ j ] ;
//find the peak channel
if ( board . channel_amp [ j ] > board . maxchannel_amp ) {
board . maxchannel = j ;
board . maxchannel_amp = board . channel_amp [ j ] ;
// cout << maxchannel_b0 << " " <<maxchannelamp_b0 << endl;
}
//set the channel positions in mm
board . channel_position [ j ] = 0.8 * j + 0.2 * ( floor ( j / 64 ) ) ;
//cout << board.channel_position[j] << " " << j << " " << (floor(j/64)) << endl;
}
}
else std : : cerr < < " Error reading board data. " < < std : : endl ;
return board ;
}
beamRecon beamreconstruction ( bpm_frame_v2 frametoanalyse , double threshold = 30. ) {
///////////////// linear regression using Integration by parts of gaussian function.
beamRecon beam ;
double SumT , SumS , SumS2 , SumST , SumT2 , SumY , SumYS , SumYT , sigmaABC , muABC , p , c , b , b_den , b_num , SumYYP , SumYYM , MeanY ;
TMatrixD M1 ( 3 , 3 ) ;
TMatrixD M1inv ( 3 , 3 ) ;
TVectorD ABC ( 3 ) ;
TVectorD M2 ( 3 ) ;
vector < double > signal_list ;
vector < double > channel_list ;
2021-02-10 17:07:29 +01:00
channel_list . clear ( ) ;
2021-01-25 12:39:07 +01:00
SumY = 0. ;
SumS = 0. ;
SumT = 0. ;
SumS2 = 0. ;
SumST = 0. ;
SumT2 = 0. ;
SumYS = 0. ;
SumYT = 0. ;
b_den = 0. ;
b_num = 0. ;
b = 0. ;
p = 0. ;
c = 0. ;
SumYYM = 0. ;
SumYYP = 0. ;
MeanY = 0. ;
// const int array_length = sizeof(frametoanalyse.channel_amp)/sizeof(double);
2021-02-08 17:58:07 +01:00
const int array_length = frametoanalyse . nrChannels ;
2021-01-25 12:39:07 +01:00
vector < Channel > channel_reducedlist ; //for anomaly detection
vector < Channel > channel_reducedlistcopy ; //for anomaly detection
2021-02-08 17:58:07 +01:00
//hardcoded pixels to mask for this data set.
const int arr_0 [ ] = { 139 } ;
//const int arr_1[] = {};
const int arr_2 [ ] = { 11 , 12 } ;
const int arr_3 [ ] = { 1 , 2 , } ;
vector < int > masked_channels [ 4 ] ;
masked_channels [ 0 ] . assign ( arr_0 , arr_0 + sizeof ( arr_0 ) / sizeof ( * arr_0 ) ) ;
// masked_channels[0].assign( arr_0, arr_0 + sizeof(arr_0) / sizeof(*arr_0) );
masked_channels [ 2 ] . assign ( arr_2 , arr_2 + sizeof ( arr_2 ) / sizeof ( * arr_2 ) ) ;
masked_channels [ 3 ] . assign ( arr_3 , arr_3 + sizeof ( arr_3 ) / sizeof ( * arr_3 ) ) ;
2021-01-25 12:39:07 +01:00
Channel tmp ;
int temp_lastneighbour = - 128 ;
for ( int i = 0 ; i < array_length ; i + + ) {
2021-02-10 17:07:29 +01:00
if ( count ( masked_channels [ frametoanalyse . board_number ] . begin ( ) , masked_channels [ frametoanalyse . board_number ] . end ( ) , i ) ) continue ; //check masked pixel list, and do not add it to the list of channels for analysis.
2021-01-25 12:39:07 +01:00
if ( frametoanalyse . channel_amp [ i ] > = threshold ) {
// cout << "ch: " << i << endl;
// signal_list.push_back(frametoanalyse.channel_amp[i]);
// channel_list.push_back(frametoanalyse.channel_position[i]);
tmp . amplitude = frametoanalyse . channel_amp [ i ] ;
tmp . position = frametoanalyse . channel_position [ i ] ;
tmp . chnumber = i ;
tmp . last_neighbour = temp_lastneighbour ;
temp_lastneighbour = i ;
channel_reducedlist . push_back ( tmp ) ;
if ( channel_reducedlist . size ( ) > 1 ) {
channel_reducedlist [ channel_reducedlist . size ( ) - 2 ] . next_neighbour = i ;
}
}
}
//anomaly detection
//remove channels without neighbours.
for ( int i = 0 ; i < channel_reducedlist . size ( ) ; i + + ) {
if ( abs ( channel_reducedlist [ i ] . chnumber - channel_reducedlist [ i ] . last_neighbour ) < = 1 | | abs ( channel_reducedlist [ i ] . chnumber - channel_reducedlist [ i ] . next_neighbour ) < = 1 ) {
channel_reducedlistcopy . push_back ( channel_reducedlist [ i ] ) ;
// cout << channel_reducedlist[i].chnumber << " " << channel_reducedlist[i].last_neighbour << " " << channel_reducedlist[i].next_neighbour << endl;
}
}
// channel_reducedlist.clear();//empty list to reuse it.
double cluster_average ;
double cluster_variance ;
if ( channel_reducedlistcopy . size ( ) > 2 ) {
cluster_average = avg ( channel_reducedlistcopy ) ;
cluster_variance = variance ( channel_reducedlistcopy , cluster_average ) ;
// cout << cluster_average << " " << cluster_variance << endl;
}
//include all channels +/- 2*variance of the main cluster
for ( int i = 0 ; i < array_length ; i + + ) {
if ( abs ( i - cluster_average ) < 2 * cluster_variance ) {
signal_list . push_back ( frametoanalyse . channel_amp [ i ] ) ;
channel_list . push_back ( frametoanalyse . channel_position [ i ] ) ;
}
}
// sort(channel_reducedlist.begin(),channel_reducedlist.end(),CompareChannels);
const int vector_length = channel_list . size ( ) ;
beam . n_channels = vector_length ;
beam . Sum = std : : accumulate ( signal_list . begin ( ) , signal_list . end ( ) , 0 ) ;
if ( vector_length < = 3 ) return beam ;
double S [ vector_length ] ;
double T [ vector_length ] ;
for ( int k = 0 ; k < vector_length ; k + + ) {
if ( k = = 0 ) {
S [ k ] = 0. ; T [ k ] = 0. ;
}
else {
S [ k ] = S [ k - 1 ] + 0.5 * ( signal_list [ k ] + signal_list [ k - 1 ] ) * ( channel_list [ k ] - channel_list [ k - 1 ] ) ;
T [ k ] = T [ k - 1 ] + 0.5 * ( channel_list [ k ] * signal_list [ k ] + channel_list [ k - 1 ] * signal_list [ k - 1 ] ) * ( channel_list [ k ] - channel_list [ k - 1 ] ) ;
}
// cout << S[k] << " " << T[k] << endl;
SumS + = S [ k ] ; SumT + = T [ k ] ;
SumY + = signal_list [ k ] ;
SumS2 + = S [ k ] * S [ k ] ; SumST + = S [ k ] * T [ k ] ; SumT2 + = T [ k ] * T [ k ] ;
SumYS + = signal_list [ k ] * S [ k ] ;
SumYT + = signal_list [ k ] * T [ k ] ;
MeanY + = signal_list [ k ] ;
}
MeanY / = vector_length ;
M1 ( 0 , 0 ) = SumT2 ; M1 ( 0 , 1 ) = SumST ; M1 ( 0 , 2 ) = SumT ; M1 ( 1 , 0 ) = SumST ; M1 ( 1 , 1 ) = SumS2 ;
M1 ( 1 , 2 ) = SumS ; M1 ( 2 , 0 ) = SumT ; M1 ( 2 , 1 ) = SumS ;
M1 ( 2 , 2 ) = vector_length ;
M2 ( 0 ) = SumYT ; M2 ( 1 ) = SumYS ; M2 ( 2 ) = SumY ;
M1inv = M1 . Invert ( ) ; ABC = M1inv * M2 ;
//calculate b,p,c ---> y = b*exp(-p*(x-c)*(x-c))
p = - ABC ( 0 ) / 2. ; c = - ABC ( 1 ) / ABC ( 0 ) ;
for ( int k = 0 ; k < vector_length ; k + + ) {
b_num + = exp ( - p * ( channel_list [ k ] - c ) * ( channel_list [ k ] - c ) ) * signal_list [ k ] ;
b_den + = exp ( - 2 * p * ( channel_list [ k ] - c ) * ( channel_list [ k ] - c ) ) ;
}
b = b_num / b_den ;
2021-02-10 17:07:29 +01:00
for ( int k = 0 ; k < vector_length ; k + + ) {
SumYYM + = ( signal_list [ k ] - MeanY ) * ( signal_list [ k ] - MeanY ) ;
SumYYP + = ( b * exp ( - p * ( channel_list [ k ] - c ) * ( channel_list [ k ] - c ) ) - MeanY ) * ( b * exp ( - p * ( channel_list [ k ] - c ) * ( channel_list [ k ] - c ) ) - MeanY ) ;
}
// cout << "R-squared = " << SumYYP/SumYYM << endl;
2021-01-25 12:39:07 +01:00
beam . Position = - ABC ( 1 ) / ABC ( 0 ) ;
beam . Focus = 2.3548 / sqrt ( 2 * p ) ;
beam . Peak = b ;
beam . Rsqr = SumYYP / SumYYM ;
beam . Skew = gsl_stats_wskew_m_sd ( & signal_list [ 0 ] , 1 , & channel_list [ 0 ] , 1 , vector_length , beam . Position , beam . Focus / 2.3548 ) ; //skewness (symmetry)
beam . Kurtosis = gsl_stats_wkurtosis_m_sd ( & signal_list [ 0 ] , 1 , & channel_list [ 0 ] , 1 , vector_length , beam . Position , beam . Focus / 2.3548 ) ; //excess kurtosis (well behaved tails)
return beam ;
}