fluka_gfortran7_hit/proton/#langaus.C#
Blake Leverington 090051977b first push
2021-08-30 16:15:26 +02:00

353 lines
11 KiB
Plaintext

/// \ingroup tutorial_fit
/// \notebook
/// Convoluted Landau and Gaussian Fitting Function
/// (using ROOT's Landau and Gauss functions)
///
/// Based on a Fortran code by R.Fruehwirth (fruhwirth@hephy.oeaw.ac.at)
///
/// to execute this example, do:
///
/// ~~~{.cpp}
/// root > .x langaus.C
/// ~~~
///
/// or
///
/// ~~~{.cpp}
/// root > .x langaus.C++
/// ~~~
///
/// \macro_image
/// \macro_output
/// \macro_code
///
/// \authors H.Pernegger, Markus Friedl
#include "TH1.h"
#include "TF1.h"
#include "TROOT.h"
#include "TStyle.h"
#include "TMath.h"
#include <TH2.h>
#include <TStyle.h>
#include <TCanvas.h>
#include <iostream>
#include <fstream>
#include <iomanip>
#include <cstdlib>
#include <cmath>
#include <string.h>
#include <TLorentzVector.h>
#include <vector>
#include <TApplication.h>
#include <TAxis.h>
#include <stdio.h>
#include <stdlib.h>
#include <TFile.h>
#include <TTree.h>
Double_t langaufun(Double_t *x, Double_t *par) {
//Fit parameters:
//par[0]=Width (scale) parameter of Landau density
//par[1]=Most Probable (MP, location) parameter of Landau density
//par[2]=Total area (integral -inf to inf, normalization constant)
//par[3]=Width (sigma) of convoluted Gaussian function
//
//In the Landau distribution (represented by the CERNLIB approximation),
//the maximum is located at x=-0.22278298 with the location parameter=0.
//This shift is corrected within this function, so that the actual
//maximum is identical to the MP parameter.
// Numeric constants
Double_t invsq2pi = 0.3989422804014; // (2 pi)^(-1/2)
Double_t mpshift = -0.22278298; // Landau maximum location
// Control constants
Double_t np = 200.0; // number of convolution steps
Double_t sc = 4.0; // convolution extends to +-sc Gaussian sigmas
// Variables
Double_t xx;
Double_t mpc;
Double_t fland;
Double_t sum = 0.0;
Double_t xlow,xupp;
Double_t step;
Double_t i;
// MP shift correction
mpc = par[1] - mpshift * par[0];
// Range of convolution integral
xlow = x[0] - sc * par[3];
xupp = x[0] + 2*sc * par[3];
step = (xupp-xlow) / np;
// Convolution integral of Landau and Gaussian by sum
for(i=1.0; i<=np/2; i++) {
xx = xlow + (i-.5) * step;
fland = TMath::Landau(xx,mpc,par[0]) / par[0];
sum += fland * TMath::Gaus(x[0],xx,par[3]);
xx = xupp - (i-.5) * step;
fland = TMath::Landau(xx,mpc,par[0]) / par[0];
sum += fland * TMath::Gaus(x[0],xx,par[3]);
}
return (par[2] * step * sum * invsq2pi / par[3]);
}
TF1 *langaufit(TH1D *his, Double_t *fitrange, Double_t *startvalues, Double_t *parlimitslo, Double_t *parlimitshi, Double_t *fitparams, Double_t *fiterrors, Double_t *ChiSqr, Int_t *NDF)
{
// Once again, here are the Landau * Gaussian parameters:
// par[0]=Width (scale) parameter of Landau density
// par[1]=Most Probable (MP, location) parameter of Landau density
// par[2]=Total area (integral -inf to inf, normalization constant)
// par[3]=Width (sigma) of convoluted Gaussian function
//
// Variables for langaufit call:
// his histogram to fit
// fitrange[2] lo and hi boundaries of fit range
// startvalues[4] reasonable start values for the fit
// parlimitslo[4] lower parameter limits
// parlimitshi[4] upper parameter limits
// fitparams[4] returns the final fit parameters
// fiterrors[4] returns the final fit errors
// ChiSqr returns the chi square
// NDF returns ndf
Int_t i;
Char_t FunName[100];
sprintf(FunName,"Fitfcn_%s",his->GetName());
TF1 *ffitold = (TF1*)gROOT->GetListOfFunctions()->FindObject(FunName);
if (ffitold) delete ffitold;
TF1 *ffit = new TF1(FunName,langaufun,fitrange[0],fitrange[1],4);
ffit->SetParameters(startvalues);
ffit->SetParNames("Width","MP","Area","GSigma");
for (i=0; i<4; i++) {
ffit->SetParLimits(i, parlimitslo[i], parlimitshi[i]);
}
his->Fit(FunName,"RB0"); // fit within specified range, use ParLimits, do not plot
ffit->GetParameters(fitparams); // obtain fit parameters
for (i=0; i<4; i++) {
fiterrors[i] = ffit->GetParError(i); // obtain fit parameter errors
}
ChiSqr[0] = ffit->GetChisquare(); // obtain chi^2
NDF[0] = ffit->GetNDF(); // obtain ndf
return (ffit); // return fit function
}
Int_t langaupro(Double_t *params, Double_t &maxx, Double_t &FWHM) {
// Seaches for the location (x value) at the maximum of the
// Landau-Gaussian convolute and its full width at half-maximum.
//
// The search is probably not very efficient, but it's a first try.
Double_t p,x,fy,fxr,fxl;
Double_t step;
Double_t l,lold;
Int_t i = 0;
Int_t MAXCALLS = 10000;
// Search for maximum
p = params[1] - 0.1 * params[0];
step = 0.05 * params[0];
lold = -2.0;
l = -1.0;
while ( (l != lold) && (i < MAXCALLS) ) {
i++;
lold = l;
x = p + step;
l = langaufun(&x,params);
if (l < lold)
step = -step/10;
p += step;
}
if (i == MAXCALLS)
return (-1);
maxx = x;
fy = l/2;
// Search for right x location of fy
p = maxx + params[0];
step = params[0];
lold = -2.0;
l = -1e300;
i = 0;
while ( (l != lold) && (i < MAXCALLS) ) {
i++;
lold = l;
x = p + step;
l = TMath::Abs(langaufun(&x,params) - fy);
if (l > lold)
step = -step/10;
p += step;
}
if (i == MAXCALLS)
return (-2);
fxr = x;
// Search for left x location of fy
p = maxx - 0.5 * params[0];
step = -params[0];
lold = -2.0;
l = -1e300;
i = 0;
while ( (l != lold) && (i < MAXCALLS) ) {
i++;
lold = l;
x = p + step;
l = TMath::Abs(langaufun(&x,params) - fy);
if (l > lold)
step = -step/10;
p += step;
}
if (i == MAXCALLS)
return (-3);
fxl = x;
FWHM = fxr - fxl;
return (0);
}
void langaus() {
// Fill Histogram
/* Int_t data[100] = {10,20,50,3,10,5,2,6,11,18,18,55,90,141,255,323,454,563,681,
737,821,796,832,720,637,558,519,460,357,291,279,241,212,
153,164,139,106,95,91,76,80,80,59,58,51,30,49,23,35,28,23,
22,27,27,24,20,16,17,14,20,12,12,13,10,17,7,6,12,6,12,4,
9,9,10,3,4,5,2,4,1,5,5,1,7,1,6,3,3,3,4,5,4,4,2,2,7,2,4};
TH1F *hSNR = new TH1F("snr","Signal-to-noise",400,0,400);
*/
// for (Int_t i=0; i<100; i++) hSNR->Fill(i,data[i]);
TH1D * hSNR;
Double_t graph_x[30], graph_y[30], graph_xerr[30], graph_yerr[30];
Double_t beta_proton[30] = {0.308525262, 0.340993523, 0.366173485, 0.386743776, 0.404197708, 0.4194131, 0.43294541, 0.445179695, 0.456345494, 0.466616582, 0.476154213, 0.48502264, 0.493348242, 0.501186212, 0.50863865, 0.515744144, 0.522562549, 0.52911069, 0.535379917, 0.541397728, 0.549575745, 0.557428612, 0.564849395, 0.571867977, 0.578541117, 0.584900169};
Double_t beta_helium[30] = {0.316661966, 0.34727202, 0.371222186, 0.391037227, 0.408018455, 0.422922098, 0.436235455, 0.44827542, 0.459299095, 0.469441244, 0.478845524, 0.487649369, 0.495886825, 0.503656244, 0.510990953, 0.517959457, 0.52457247, 0.530888884, 0.536925849, 0.54269899, 0.550671248, 0.55845178, 0.565814653, 0.572798702, 0.579448698, 0.585785313};
Double_t beta_carbon[30] = {0.407931067, 0.448122448, 0.479020432, 0.504000457, 0.524971648, 0.543076553, 0.559041917, 0.573329576, 0.586254563, 0.598061846, 0.608917559, 0.618952311, 0.62829287, 0.637039726, 0.645286945, 0.65311609, 0.660570813, 0.667689852, 0.67446932, 0.680943928, 0.689677353, 0.698000799, 0.70580765, 0.71315081, 0.720086739, 0.726650602};
Double_t beta_oxygen[30] = {0.43638582, 0.479000679, 0.51134888, 0.537325331, 0.559061572, 0.57764689, 0.594123989, 0.608730698, 0.621997639, 0.63402408, 0.645050809, 0.655226738, 0.664724227, 0.673475951, 0.681810969, 0.689681788, 0.697243281, 0.704219104, 0.710968918, 0.717442538, 0.726111033, 0.734356548, 0.742073831, 0.749383281, 0.756156282, 0.762562424};
// hSNR = h_beamSignal_b0[13];
// Fitting SNR histo
printf("Fitting...\n");
TCanvas * c1 = new TCanvas("c1","c1", 800, 600);
// Setting fit range and start values
Double_t fr[2];
Double_t sv[4], pllo[4], plhi[4], fp[4], fpe[4];
Double_t chisqr;
Int_t ndf;
TF1 *fitsnr;
Double_t SNRPeak, SNRFWHM;
char rootfilename[50] = "";
char saveplotname[50] = "";
char fout_mpv_name[50] = "";
int j = 1;
Double_t norm;
ofstream myfile, fout_mpv;
myfile.open ("MPVcorrection_proton0mm05.txt");
sprintf(fout_mpv_name, "jobs%i/plots/mpv.txt",j);
fout_mpv.open (fout_mpv_name);
for (int i = 0; i<26;i++){
sprintf(rootfilename, "jobs%i/runjob%i001_eventdata_out.root",j,i);
TFile *rootFile = new TFile(rootfilename,"OPEN");
TH1D * hSNR = (TH1D*)rootFile->Get("h_spratio");
norm = hSNR->GetEntries();
hSNR->Scale(1/norm);
fr[0]=hSNR->GetMean() - 2*hSNR->GetRMS();
fr[1]=hSNR->GetMean() + 2*hSNR->GetRMS();
//fr[1] = 2.0;
pllo[0]=0.00001; pllo[1]=0.50; pllo[2]=0.001; pllo[3]=0.01;
plhi[0]=0.1; plhi[1]=1.5; plhi[2]=0.055; plhi[3]=0.1;
sv[0]=0.05;
//sv[1]=2.1;
sv[2]=0.01;
sv[3]=0.02;
sv[1] = hSNR->GetMean();
fitsnr = langaufit(hSNR,fr,sv,pllo,plhi,fp,fpe,&chisqr,&ndf);
langaupro(fp,SNRPeak,SNRFWHM);
graph_x[i] = beta_proton[i];
graph_y[i] = fp[1];
graph_yerr[i] = sqrt(fitsnr->GetParError(1)*fitsnr->GetParError(1)+0.012*0.012*graph_y[i]*graph_y[i]);
fout_mpv << graph_x[i] << " " << graph_y[i] << " " << graph_yerr[i] << endl;
printf("Fitting done\nPlotting results...\n");
myfile << i << " " << graph_y[i] << endl;
// Global style settings
gStyle->SetOptStat(1111);
gStyle->SetOptFit(111);
//gStyle->SetLabelSize(0.03,"x");
//gStyle->SetLabelSize(0.03,"y");
// hSNR->GetXaxis()->SetRange(0,70);
hSNR->Draw();
fitsnr->Draw("lsame");
c1->Update();
sprintf(saveplotname, "jobs%i/plots/runjob%i001_h_spratio.pdf",j,i);
c1->SaveAs(saveplotname);
//c1->WaitPrimitive();
hSNR->Delete();
rootFile->Close();
}
TGraphErrors * graph_1 = new TGraphErrors(23,graph_x, graph_y, 0, graph_yerr);
TCanvas * c2 = new TCanvas("c2","c2", 800, 600);
c2->cd();
graph_1->Draw("A*");
c2->SaveAs("MPVcorrection_proton0mm05.pdf");
myfile.close();
fout_mpv.close();
}