356 lines
11 KiB
C++
356 lines
11 KiB
C++
|
/// \ingroup tutorial_fit
|
||
|
/// \notebook
|
||
|
/// Convoluted Landau and Gaussian Fitting Function
|
||
|
/// (using ROOT's Landau and Gauss functions)
|
||
|
///
|
||
|
/// Based on a Fortran code by R.Fruehwirth (fruhwirth@hephy.oeaw.ac.at)
|
||
|
///
|
||
|
/// to execute this example, do:
|
||
|
///
|
||
|
/// ~~~{.cpp}
|
||
|
/// root > .x langaus.C
|
||
|
/// ~~~
|
||
|
///
|
||
|
/// or
|
||
|
///
|
||
|
/// ~~~{.cpp}
|
||
|
/// root > .x langaus.C++
|
||
|
/// ~~~
|
||
|
///
|
||
|
/// \macro_image
|
||
|
/// \macro_output
|
||
|
/// \macro_code
|
||
|
///
|
||
|
/// \authors H.Pernegger, Markus Friedl
|
||
|
|
||
|
#include "TH1.h"
|
||
|
#include "TF1.h"
|
||
|
#include "TROOT.h"
|
||
|
#include "TStyle.h"
|
||
|
#include "TMath.h"
|
||
|
#include <TH2.h>
|
||
|
#include <TStyle.h>
|
||
|
#include <TCanvas.h>
|
||
|
#include <iostream>
|
||
|
#include <fstream>
|
||
|
#include <iomanip>
|
||
|
#include <cstdlib>
|
||
|
#include <cmath>
|
||
|
#include <string.h>
|
||
|
#include <TLorentzVector.h>
|
||
|
#include <vector>
|
||
|
#include <TApplication.h>
|
||
|
#include <TAxis.h>
|
||
|
#include <stdio.h>
|
||
|
#include <stdlib.h>
|
||
|
#include <TFile.h>
|
||
|
#include <TTree.h>
|
||
|
|
||
|
Double_t langaufun(Double_t *x, Double_t *par) {
|
||
|
|
||
|
//Fit parameters:
|
||
|
//par[0]=Width (scale) parameter of Landau density
|
||
|
//par[1]=Most Probable (MP, location) parameter of Landau density
|
||
|
//par[2]=Total area (integral -inf to inf, normalization constant)
|
||
|
//par[3]=Width (sigma) of convoluted Gaussian function
|
||
|
//
|
||
|
//In the Landau distribution (represented by the CERNLIB approximation),
|
||
|
//the maximum is located at x=-0.22278298 with the location parameter=0.
|
||
|
//This shift is corrected within this function, so that the actual
|
||
|
//maximum is identical to the MP parameter.
|
||
|
|
||
|
// Numeric constants
|
||
|
Double_t invsq2pi = 0.3989422804014; // (2 pi)^(-1/2)
|
||
|
Double_t mpshift = -0.22278298; // Landau maximum location
|
||
|
|
||
|
// Control constants
|
||
|
Double_t np = 200.0; // number of convolution steps
|
||
|
Double_t sc = 4.0; // convolution extends to +-sc Gaussian sigmas
|
||
|
|
||
|
// Variables
|
||
|
Double_t xx;
|
||
|
Double_t mpc;
|
||
|
Double_t fland;
|
||
|
Double_t sum = 0.0;
|
||
|
Double_t xlow,xupp;
|
||
|
Double_t step;
|
||
|
Double_t i;
|
||
|
|
||
|
|
||
|
// MP shift correction
|
||
|
mpc = par[1] - mpshift * par[0];
|
||
|
|
||
|
// Range of convolution integral
|
||
|
xlow = x[0] - sc * par[3];
|
||
|
xupp = x[0] + 2*sc * par[3];
|
||
|
|
||
|
step = (xupp-xlow) / np;
|
||
|
|
||
|
// Convolution integral of Landau and Gaussian by sum
|
||
|
for(i=1.0; i<=np/2; i++) {
|
||
|
xx = xlow + (i-.5) * step;
|
||
|
fland = TMath::Landau(xx,mpc,par[0]) / par[0];
|
||
|
sum += fland * TMath::Gaus(x[0],xx,par[3]);
|
||
|
|
||
|
xx = xupp - (i-.5) * step;
|
||
|
fland = TMath::Landau(xx,mpc,par[0]) / par[0];
|
||
|
sum += fland * TMath::Gaus(x[0],xx,par[3]);
|
||
|
}
|
||
|
|
||
|
return (par[2] * step * sum * invsq2pi / par[3]);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
TF1 *langaufit(TH1D *his, Double_t *fitrange, Double_t *startvalues, Double_t *parlimitslo, Double_t *parlimitshi, Double_t *fitparams, Double_t *fiterrors, Double_t *ChiSqr, Int_t *NDF)
|
||
|
{
|
||
|
// Once again, here are the Landau * Gaussian parameters:
|
||
|
// par[0]=Width (scale) parameter of Landau density
|
||
|
// par[1]=Most Probable (MP, location) parameter of Landau density
|
||
|
// par[2]=Total area (integral -inf to inf, normalization constant)
|
||
|
// par[3]=Width (sigma) of convoluted Gaussian function
|
||
|
//
|
||
|
// Variables for langaufit call:
|
||
|
// his histogram to fit
|
||
|
// fitrange[2] lo and hi boundaries of fit range
|
||
|
// startvalues[4] reasonable start values for the fit
|
||
|
// parlimitslo[4] lower parameter limits
|
||
|
// parlimitshi[4] upper parameter limits
|
||
|
// fitparams[4] returns the final fit parameters
|
||
|
// fiterrors[4] returns the final fit errors
|
||
|
// ChiSqr returns the chi square
|
||
|
// NDF returns ndf
|
||
|
|
||
|
Int_t i;
|
||
|
Char_t FunName[100];
|
||
|
|
||
|
sprintf(FunName,"Fitfcn_%s",his->GetName());
|
||
|
|
||
|
TF1 *ffitold = (TF1*)gROOT->GetListOfFunctions()->FindObject(FunName);
|
||
|
if (ffitold) delete ffitold;
|
||
|
|
||
|
TF1 *ffit = new TF1(FunName,langaufun,fitrange[0],fitrange[1],4);
|
||
|
ffit->SetParameters(startvalues);
|
||
|
ffit->SetParNames("Width","MP","Area","GSigma");
|
||
|
|
||
|
for (i=0; i<4; i++) {
|
||
|
ffit->SetParLimits(i, parlimitslo[i], parlimitshi[i]);
|
||
|
}
|
||
|
|
||
|
his->Fit(FunName,"RB0"); // fit within specified range, use ParLimits, do not plot
|
||
|
|
||
|
ffit->GetParameters(fitparams); // obtain fit parameters
|
||
|
for (i=0; i<4; i++) {
|
||
|
fiterrors[i] = ffit->GetParError(i); // obtain fit parameter errors
|
||
|
}
|
||
|
ChiSqr[0] = ffit->GetChisquare(); // obtain chi^2
|
||
|
NDF[0] = ffit->GetNDF(); // obtain ndf
|
||
|
|
||
|
return (ffit); // return fit function
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
Int_t langaupro(Double_t *params, Double_t &maxx, Double_t &FWHM) {
|
||
|
|
||
|
// Seaches for the location (x value) at the maximum of the
|
||
|
// Landau-Gaussian convolute and its full width at half-maximum.
|
||
|
//
|
||
|
// The search is probably not very efficient, but it's a first try.
|
||
|
|
||
|
Double_t p,x,fy,fxr,fxl;
|
||
|
Double_t step;
|
||
|
Double_t l,lold;
|
||
|
Int_t i = 0;
|
||
|
Int_t MAXCALLS = 10000;
|
||
|
|
||
|
|
||
|
// Search for maximum
|
||
|
|
||
|
p = params[1] - 0.1 * params[0];
|
||
|
step = 0.05 * params[0];
|
||
|
lold = -2.0;
|
||
|
l = -1.0;
|
||
|
|
||
|
|
||
|
while ( (l != lold) && (i < MAXCALLS) ) {
|
||
|
i++;
|
||
|
|
||
|
lold = l;
|
||
|
x = p + step;
|
||
|
l = langaufun(&x,params);
|
||
|
|
||
|
if (l < lold)
|
||
|
step = -step/10;
|
||
|
|
||
|
p += step;
|
||
|
}
|
||
|
|
||
|
if (i == MAXCALLS)
|
||
|
return (-1);
|
||
|
|
||
|
maxx = x;
|
||
|
|
||
|
fy = l/2;
|
||
|
|
||
|
|
||
|
// Search for right x location of fy
|
||
|
|
||
|
p = maxx + params[0];
|
||
|
step = params[0];
|
||
|
lold = -2.0;
|
||
|
l = -1e300;
|
||
|
i = 0;
|
||
|
|
||
|
|
||
|
while ( (l != lold) && (i < MAXCALLS) ) {
|
||
|
i++;
|
||
|
|
||
|
lold = l;
|
||
|
x = p + step;
|
||
|
l = TMath::Abs(langaufun(&x,params) - fy);
|
||
|
|
||
|
if (l > lold)
|
||
|
step = -step/10;
|
||
|
|
||
|
p += step;
|
||
|
}
|
||
|
|
||
|
if (i == MAXCALLS)
|
||
|
return (-2);
|
||
|
|
||
|
fxr = x;
|
||
|
|
||
|
|
||
|
// Search for left x location of fy
|
||
|
|
||
|
p = maxx - 0.5 * params[0];
|
||
|
step = -params[0];
|
||
|
lold = -2.0;
|
||
|
l = -1e300;
|
||
|
i = 0;
|
||
|
|
||
|
while ( (l != lold) && (i < MAXCALLS) ) {
|
||
|
i++;
|
||
|
|
||
|
lold = l;
|
||
|
x = p + step;
|
||
|
l = TMath::Abs(langaufun(&x,params) - fy);
|
||
|
|
||
|
if (l > lold)
|
||
|
step = -step/10;
|
||
|
|
||
|
p += step;
|
||
|
}
|
||
|
|
||
|
if (i == MAXCALLS)
|
||
|
return (-3);
|
||
|
|
||
|
|
||
|
fxl = x;
|
||
|
|
||
|
FWHM = fxr - fxl;
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
void langaus() {
|
||
|
// Fill Histogram
|
||
|
/* Int_t data[100] = {10,20,50,3,10,5,2,6,11,18,18,55,90,141,255,323,454,563,681,
|
||
|
737,821,796,832,720,637,558,519,460,357,291,279,241,212,
|
||
|
153,164,139,106,95,91,76,80,80,59,58,51,30,49,23,35,28,23,
|
||
|
22,27,27,24,20,16,17,14,20,12,12,13,10,17,7,6,12,6,12,4,
|
||
|
9,9,10,3,4,5,2,4,1,5,5,1,7,1,6,3,3,3,4,5,4,4,2,2,7,2,4};
|
||
|
TH1F *hSNR = new TH1F("snr","Signal-to-noise",400,0,400);
|
||
|
*/
|
||
|
// for (Int_t i=0; i<100; i++) hSNR->Fill(i,data[i]);
|
||
|
TH1D * hSNR;
|
||
|
|
||
|
Double_t graph_x[30], graph_y[30], graph_xerr[30], graph_yerr[30];
|
||
|
Double_t beta_proton[30] = {0.308525262, 0.340993523, 0.366173485, 0.386743776, 0.404197708, 0.4194131, 0.43294541, 0.445179695, 0.456345494, 0.466616582, 0.476154213, 0.48502264, 0.493348242, 0.501186212, 0.50863865, 0.515744144, 0.522562549, 0.52911069, 0.535379917, 0.541397728, 0.549575745, 0.557428612, 0.564849395, 0.571867977, 0.578541117, 0.584900169};
|
||
|
Double_t beta_helium[30] = {0.316661966, 0.34727202, 0.371222186, 0.391037227, 0.408018455, 0.422922098, 0.436235455, 0.44827542, 0.459299095, 0.469441244, 0.478845524, 0.487649369, 0.495886825, 0.503656244, 0.510990953, 0.517959457, 0.52457247, 0.530888884, 0.536925849, 0.54269899, 0.550671248, 0.55845178, 0.565814653, 0.572798702, 0.579448698, 0.585785313};
|
||
|
Double_t beta_carbon[30] = {0.407931067, 0.448122448, 0.479020432, 0.504000457, 0.524971648, 0.543076553, 0.559041917, 0.573329576, 0.586254563, 0.598061846, 0.608917559, 0.618952311, 0.62829287, 0.637039726, 0.645286945, 0.65311609, 0.660570813, 0.667689852, 0.67446932, 0.680943928, 0.689677353, 0.698000799, 0.70580765, 0.71315081, 0.720086739, 0.726650602};
|
||
|
Double_t beta_oxygen[30] = {0.43638582, 0.479000679, 0.51134888, 0.537325331, 0.559061572, 0.57764689, 0.594123989, 0.608730698, 0.621997639, 0.63402408, 0.645050809, 0.655226738, 0.664724227, 0.673475951, 0.681810969, 0.689681788, 0.697243281, 0.704219104, 0.710968918, 0.717442538, 0.726111033, 0.734356548, 0.742073831, 0.749383281, 0.756156282, 0.762562424};
|
||
|
|
||
|
|
||
|
// hSNR = h_beamSignal_b0[13];
|
||
|
// Fitting SNR histo
|
||
|
printf("Fitting...\n");
|
||
|
TCanvas * c1 = new TCanvas("c1","c1", 800, 600);
|
||
|
|
||
|
// Setting fit range and start values
|
||
|
Double_t fr[2];
|
||
|
Double_t sv[4], pllo[4], plhi[4], fp[4], fpe[4];
|
||
|
Double_t chisqr;
|
||
|
Int_t ndf;
|
||
|
TF1 *fitsnr;
|
||
|
Double_t SNRPeak, SNRFWHM;
|
||
|
char rootfilename[50] = "";
|
||
|
char saveplotname[50] = "";
|
||
|
char fout_mpv_name[50] = "";
|
||
|
Double_t norm;
|
||
|
|
||
|
ofstream myfile, fout_mpv;
|
||
|
int j = 1;
|
||
|
|
||
|
myfile.open ("MPVcorrection_helium0mm05.txt");
|
||
|
sprintf(fout_mpv_name, "jobs%i/plots/mpv.txt",j);
|
||
|
fout_mpv.open (fout_mpv_name);
|
||
|
|
||
|
for (int i = 0; i<26;i++){
|
||
|
sprintf(rootfilename, "jobs%i/runjob%i001_eventdata_out.root",j,i);
|
||
|
TFile *rootFile = new TFile(rootfilename,"OPEN");
|
||
|
|
||
|
TH1D * hSNR = (TH1D*)rootFile->Get("h_spratio");
|
||
|
norm = hSNR->GetEntries();
|
||
|
hSNR->Scale(1/norm);
|
||
|
|
||
|
fr[0]=hSNR->GetMean() - 2*hSNR->GetRMS();
|
||
|
fr[1]=hSNR->GetMean() + 3*hSNR->GetRMS();
|
||
|
|
||
|
pllo[0]=0.0006; pllo[1]=0.50; pllo[2]=0.001; pllo[3]=0.01;
|
||
|
plhi[0]=0.01; plhi[1]=1.5; plhi[2]=0.055; plhi[3]=0.05;
|
||
|
sv[0]= hSNR->GetRMS()/10.;;
|
||
|
//sv[1]=2.1;
|
||
|
sv[2]=0.01;
|
||
|
// sv[3]=0.03;
|
||
|
sv[3] = hSNR->GetRMS()/2.;
|
||
|
sv[1] = hSNR->GetMean();
|
||
|
|
||
|
fitsnr = langaufit(hSNR,fr,sv,pllo,plhi,fp,fpe,&chisqr,&ndf);
|
||
|
|
||
|
|
||
|
langaupro(fp,SNRPeak,SNRFWHM);
|
||
|
graph_x[i] = beta_helium[i];
|
||
|
graph_y[i] = fp[1];
|
||
|
graph_yerr[i] = sqrt(fitsnr->GetParError(1)*fitsnr->GetParError(1)+0.012*0.012*graph_y[i]*graph_y[i]);
|
||
|
fout_mpv << graph_x[i] << " " << graph_y[i] << " " << graph_yerr[i] << endl;
|
||
|
printf("Fitting done\nPlotting results...\n");
|
||
|
myfile << i << " " << graph_y[i] << endl;
|
||
|
|
||
|
// Global style settings
|
||
|
gStyle->SetOptStat(1111);
|
||
|
gStyle->SetOptFit(111);
|
||
|
//gStyle->SetLabelSize(0.03,"x");
|
||
|
//gStyle->SetLabelSize(0.03,"y");
|
||
|
|
||
|
// hSNR->GetXaxis()->SetRange(0,70);
|
||
|
hSNR->Draw();
|
||
|
fitsnr->Draw("lsame");
|
||
|
c1->Update();
|
||
|
sprintf(saveplotname, "jobs%i/plots/runjob%i001_h_spratio.pdf",j,i);
|
||
|
c1->SaveAs(saveplotname);
|
||
|
// c1->WaitPrimitive();
|
||
|
hSNR->Delete();
|
||
|
rootFile->Close();
|
||
|
}
|
||
|
TGraphErrors * graph_1 = new TGraphErrors(23,graph_x, graph_y, 0, graph_yerr);
|
||
|
TCanvas * c2 = new TCanvas("c2","c2", 800, 600);
|
||
|
c2->cd();
|
||
|
graph_1->Draw("A*");
|
||
|
c2->SaveAs("MPVcorrection_helium0mm05.pdf");
|
||
|
myfile.close();
|
||
|
fout_mpv.close();
|
||
|
|
||
|
|
||
|
}
|