\begin{figure}[hbt!] \centering \includegraphics[width=0.30\textwidth]{./Angular/projections/ctkeff0_KplusPi0Resolved_Run2.eps} \includegraphics[width=0.30\textwidth]{./Angular/projections/ctkeff1_KplusPi0Resolved_Run2.eps} \includegraphics[width=0.30\textwidth]{./Angular/projections/ctkeff2_KplusPi0Resolved_Run2.eps}\\ \includegraphics[width=0.30\textwidth]{./Angular/projections/ctkeff3_KplusPi0Resolved_Run2.eps} \includegraphics[width=0.30\textwidth]{./Angular/projections/ctkeff4_KplusPi0Resolved_Run2.eps} \includegraphics[width=0.30\textwidth]{./Angular/projections/ctkeff5_KplusPi0Resolved_Run2.eps}\\ \includegraphics[width=0.30\textwidth]{./Angular/projections/ctkeff6_KplusPi0Resolved_Run2.eps} \includegraphics[width=0.30\textwidth]{./Angular/projections/ctkeff7_KplusPi0Resolved_Run2.eps} \includegraphics[width=0.30\textwidth]{./Angular/projections/ctkeff8_KplusPi0Resolved_Run2.eps}\\ \includegraphics[width=0.30\textwidth]{./Angular/projections/ctkeff9_KplusPi0Resolved_Run2.eps} \includegraphics[width=0.30\textwidth]{./Angular/projections/ctkeff10_KplusPi0Resolved_Run2.eps} \includegraphics[width=0.30\textwidth]{./Angular/projections/ctkeff11_KplusPi0Resolved_Run2.eps}\\ \includegraphics[width=0.30\textwidth]{./Angular/projections/ctkeff12_KplusPi0Resolved_Run2.eps} \includegraphics[width=0.30\textwidth]{./Angular/projections/ctkeff13_KplusPi0Resolved_Run2.eps} \includegraphics[width=0.30\textwidth]{./Angular/projections/ctkeff14_KplusPi0Resolved_Run2.eps}\\ \includegraphics[width=0.30\textwidth]{./Angular/projections/ctkeff15_KplusPi0Resolved_Run2.eps} \includegraphics[width=0.30\textwidth]{./Angular/projections/ctkeff16_KplusPi0Resolved_Run2.eps} \includegraphics[width=0.30\textwidth]{./Angular/projections/ctkeff17_KplusPi0Resolved_Run2.eps}\\ \captionof{figure}[Angular acceptance parametrization projections in \ctk for \runII.]{One-dimensional projections of the angular acceptance in the dimension of \ctk in 18 bins of \qsq. The data points are \runII PHSP MC, the solid curve is the four dimensional Legendre-polynomial parametrization. \label{fig:app_angProj_ctk_Run2}} \end{figure} \begin{figure}[hbt!] \centering \includegraphics[width=0.30\textwidth]{./Angular/projections/ctleff0_KplusPi0Resolved_Run2.eps} \includegraphics[width=0.30\textwidth]{./Angular/projections/ctleff1_KplusPi0Resolved_Run2.eps} \includegraphics[width=0.30\textwidth]{./Angular/projections/ctleff2_KplusPi0Resolved_Run2.eps}\\ \includegraphics[width=0.30\textwidth]{./Angular/projections/ctleff3_KplusPi0Resolved_Run2.eps} \includegraphics[width=0.30\textwidth]{./Angular/projections/ctleff4_KplusPi0Resolved_Run2.eps} \includegraphics[width=0.30\textwidth]{./Angular/projections/ctleff5_KplusPi0Resolved_Run2.eps}\\ \includegraphics[width=0.30\textwidth]{./Angular/projections/ctleff6_KplusPi0Resolved_Run2.eps} \includegraphics[width=0.30\textwidth]{./Angular/projections/ctleff7_KplusPi0Resolved_Run2.eps} \includegraphics[width=0.30\textwidth]{./Angular/projections/ctleff8_KplusPi0Resolved_Run2.eps}\\ \includegraphics[width=0.30\textwidth]{./Angular/projections/ctleff9_KplusPi0Resolved_Run2.eps} \includegraphics[width=0.30\textwidth]{./Angular/projections/ctleff10_KplusPi0Resolved_Run2.eps} \includegraphics[width=0.30\textwidth]{./Angular/projections/ctleff11_KplusPi0Resolved_Run2.eps}\\ \includegraphics[width=0.30\textwidth]{./Angular/projections/ctleff12_KplusPi0Resolved_Run2.eps} \includegraphics[width=0.30\textwidth]{./Angular/projections/ctleff13_KplusPi0Resolved_Run2.eps} \includegraphics[width=0.30\textwidth]{./Angular/projections/ctleff14_KplusPi0Resolved_Run2.eps}\\ \includegraphics[width=0.30\textwidth]{./Angular/projections/ctleff15_KplusPi0Resolved_Run2.eps} \includegraphics[width=0.30\textwidth]{./Angular/projections/ctleff16_KplusPi0Resolved_Run2.eps} \includegraphics[width=0.30\textwidth]{./Angular/projections/ctleff17_KplusPi0Resolved_Run2.eps}\\ \captionof{figure}[Angular acceptance parametrization projections in \ctl for \runII.]{One-dimensional projections of the angular acceptance in the dimension of \ctl in 18 bins of \qsq. The data points are \runII PHSP MC, the solid curve is the four dimensional Legendre-polynomial parametrization. \label{fig:app_angProj_ctl_Run2}} \end{figure} \begin{figure}[hbt!] \centering \includegraphics[width=0.30\textwidth]{./Angular/projections/phieff0_KplusPi0Resolved_Run2.eps} \includegraphics[width=0.30\textwidth]{./Angular/projections/phieff1_KplusPi0Resolved_Run2.eps} \includegraphics[width=0.30\textwidth]{./Angular/projections/phieff2_KplusPi0Resolved_Run2.eps}\\ \includegraphics[width=0.30\textwidth]{./Angular/projections/phieff3_KplusPi0Resolved_Run2.eps} \includegraphics[width=0.30\textwidth]{./Angular/projections/phieff4_KplusPi0Resolved_Run2.eps} \includegraphics[width=0.30\textwidth]{./Angular/projections/phieff5_KplusPi0Resolved_Run2.eps}\\ \includegraphics[width=0.30\textwidth]{./Angular/projections/phieff6_KplusPi0Resolved_Run2.eps} \includegraphics[width=0.30\textwidth]{./Angular/projections/phieff7_KplusPi0Resolved_Run2.eps} \includegraphics[width=0.30\textwidth]{./Angular/projections/phieff8_KplusPi0Resolved_Run2.eps}\\ \includegraphics[width=0.30\textwidth]{./Angular/projections/phieff9_KplusPi0Resolved_Run2.eps} \includegraphics[width=0.30\textwidth]{./Angular/projections/phieff10_KplusPi0Resolved_Run2.eps} \includegraphics[width=0.30\textwidth]{./Angular/projections/phieff11_KplusPi0Resolved_Run2.eps}\\ \includegraphics[width=0.30\textwidth]{./Angular/projections/phieff12_KplusPi0Resolved_Run2.eps} \includegraphics[width=0.30\textwidth]{./Angular/projections/phieff13_KplusPi0Resolved_Run2.eps} \includegraphics[width=0.30\textwidth]{./Angular/projections/phieff14_KplusPi0Resolved_Run2.eps}\\ \includegraphics[width=0.30\textwidth]{./Angular/projections/phieff15_KplusPi0Resolved_Run2.eps} \includegraphics[width=0.30\textwidth]{./Angular/projections/phieff16_KplusPi0Resolved_Run2.eps} \includegraphics[width=0.30\textwidth]{./Angular/projections/phieff17_KplusPi0Resolved_Run2.eps}\\ \captionof{figure}[Angular acceptance parametrization projections in $\phi$ for \runII.]{One-dimensional projections of the angular acceptance in the dimension of $\phi$ in 18 bins of \qsq. The data points are \runII PHSP, the solid curve is the four dimensional Legendre-polynomial parametrization. \label{fig:app_angProj_phi_Run2}} \end{figure}