%========================================== % % Appendices related to the theory % %========================================== \section[Theoretical introduction to the \texorpdfstring{${\BuToKstmmBF}$}{BuToKstmumu} decay] {Theoretical introduction to the \texorpdfstring{\BuToKstmmBF}{BuToKstmumu} decay} \label{app:ANA-Theo} \subsection{Decay rate} The full form of \refEq{decay_rate} with explicitly stated $f_i$ is a rather lengthy \refEq{decay_rate_full}: %% \begin{align}\label{eq:decay_rate_full}\begin{split} \frac{\deriv^4\Gamma}{\deriv\cos\thetak\deriv\cos\thetak\deriv\phi\deriv q^2} = \frac{9}{32\pi}&\sum_i{ J_i\left(q^2\right)f_i\left(\cos\thetal,\cos\thetak,\phi\right)} =\\ = \frac{9}{32\pi}& \left\{\right. J_{1s} \sin^2\thetak \\ &+J_{1c} \cos^2\thetak \\ &+J_{2s} \sin^2\thetak \cos 2\thetal \\ &+J_{2c} \cos^2\thetak \cos 2\thetal \\ &+J_{3} \sin^2\thetak \sin^2\thetal \cos 2\phi \\ &+J_{4} \sin 2\thetak \sin 2\thetal \cos \phi \\ &+J_{5} \sin 2\thetak \sin \thetal \cos \phi \\ &+J_{6s} \sin^2\thetak \cos \thetal \\ &+J_{7} \sin 2\thetak \sin \thetal \sin \phi \\ &+J_{8} \sin 2\thetak \sin 2\thetal \sin \phi \\ &+J_{9} \sin^2\thetak \sin^2\thetal \sin 2\phi \left.\right\}\,. \\ \end{split}\end{align} % This lengthy formula can be simplified by neglecting the muon mass. This is a good assumptions for $\qsq\gtrsim1\gevgev$. Under this assumption, the following relations can be obtained: \begin{align}\begin{split} J_1^c &= 1-\frac{4}{3}J_1^s\,,\\ J_2^s &= \frac{1}{3}J_1^s\,,\\ J_2^c &= \frac{4}{3}J_1^s-1\,.\\ \end{split}\end{align} In some cases it is also convenient to define \emph{CP-asymmetric} angular observables $A_i$ besides the usual $S_i$ variables (see \refEq{Si_definition}) \begin{equation}\label{eq:Ai_definition} A_i = \frac{J_i-\bar{J_i}}{\Gamma+\bar{\Gamma}}\,. \end{equation} \clearpage Rewriting the \refEq{decay_rate_full} using the \emph{CP-symmetric} $S_i$ variables results in the following formula: % \begin{align}\label{eq:decay_rate2}\begin{split} &\left. \frac{{\rm d}(\Gamma+\bar{\Gamma})}{{\rm dcos}\thetal\,{\rm dcos}\thetak\,{\rm d}\phi} \right |_{\rm P} = \tfrac{9}{32\pi}\Bigl[\tfrac{3}{4} (1-\textcolor{red}{F_{\rm L}})\sin^2\thetak\\ &+ \textcolor{red}{F_{\rm L}}\cos^2\thetak + \tfrac{1}{4}(1-\textcolor{red}{F_{\rm L}})\sin^2\thetak\cos 2\thetal\nonumber\\ &- \textcolor{red}{F_{\rm L}} \cos^2\thetak\cos 2\thetal + \textcolor{red}{S_3}\sin^2\thetak \sin^2\thetal \cos 2\phi\nonumber\\ &+ \textcolor{red}{S_4} \sin 2\thetak \sin 2\thetal \cos\phi + \textcolor{red}{S_5}\sin 2\thetak \sin \thetal \cos \phi\nonumber\\ &+ \tfrac{4}{3} \textcolor{red}{A_{\rm FB}} \sin^2\thetak \cos\thetal + \textcolor{red}{S_7} \sin 2\thetak \sin\thetal \sin\phi\nonumber\\ &+ \textcolor{red}{S_8} \sin 2\thetak \sin 2\thetal \sin\phi + \textcolor{red}{S_9}\sin^2\thetak \sin^2\thetal \sin 2\phi \nonumber \Bigr] \end{split}\end{align} \subsection{\swave decay rate} The decay rate of the \swave is \begin{equation}\label{eq:decay_rate_S_app} \left. \frac{{\rm d}(\Gamma+\bar{\Gamma})}{{\rm dcos}\theta_L\,{\rm dcos}\theta_K\,{\rm d}\phi} \right |_{\rm S} =\frac{3}{16\pi}{F_S}\sin^2\theta_L\,. \end{equation} % The \pwave and \swave interference term can be parameterized as follows: % \begin{equation} \label{eq:decay_rate_PS_full} \begin{aligned} \left. \frac{{\rm d}(\Gamma+\bar{\Gamma})}{{\rm dcos}\theta_L\,{\rm dcos}\theta_K\,{\rm d}\phi} \right |_{\rm PS} =\frac{3}{16\pi}\left[\right. &{S_{S1}}\sin^2\theta_L\cos\theta_K \\ +& {S_{S2}}\sin2\theta_L \sin \theta_K \cos\phi\\ +& {S_{S3}}\sin\theta_L \sin \theta_K \cos\phi \\ +& {S_{S4}}\sin\theta_L \sin \theta_K \sin\phi \\ +& {S_{S5}}\sin2\theta_L \sin \theta_K \sin\phi \left.\right]\,. \end{aligned} \end{equation} % These two terms need to be added to the full measured decay rate. The full angular description of the decay is then in \refEq{decay_rate_final}. \clearpage