\begin{table} [hbt!]\footnotesize \centering \begin{tabular}{|l|c c c c c|} \multicolumn{6}{c}{\textbf{means}}\\ \hline \textbf{parameter} &[0.25--4.00] &[4.00--8.00] &[11.00--12.50] &[15.00--18.00] &[1.10--6.00]\\ \hline $F_{L}$ (0)&\cellcolor[HTML]{a8d281} $\phantom{-}0.183 \pm 0.044$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.062 \pm 0.046$ &\cellcolor[HTML]{a8d281} $\phantom{-}0.147 \pm 0.041$ &\cellcolor[HTML]{a8d281} $\phantom{-}0.139 \pm 0.044$ &\cellcolor[HTML]{CCE892} $\phantom{-}0.252 \pm 0.047$\\ $F_{L}$ (1)&\cellcolor[HTML]{CCE892} $\phantom{-}0.201 \pm 0.047$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.009 \pm 0.048$ &\cellcolor[HTML]{5FA55F} $-0.066 \pm 0.044$ &\cellcolor[HTML]{5FA55F} $-0.039 \pm 0.043$ &\cellcolor[HTML]{CCE892} $\phantom{-}0.216 \pm 0.047$\\ $F_{L}$ (2)&\cellcolor[HTML]{f0fea2} $\phantom{-}0.302 \pm 0.044$ &\cellcolor[HTML]{5FA55F} $-0.011 \pm 0.050$ &\cellcolor[HTML]{5FA55F} $-0.029 \pm 0.046$ &\cellcolor[HTML]{86d2a8} $-0.161 \pm 0.041$ &\cellcolor[HTML]{a8d281} $\phantom{-}0.199 \pm 0.047$\\ $F_{L}$ (3)&\cellcolor[HTML]{CCE892} $\phantom{-}0.242 \pm 0.046$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.091 \pm 0.049$ &\cellcolor[HTML]{5FA55F} $-0.087 \pm 0.044$ &\cellcolor[HTML]{5FA55F} $-0.023 \pm 0.040$ &\cellcolor[HTML]{CCE892} $\phantom{-}0.240 \pm 0.046$\\ $F_{L}$ (4)&\cellcolor[HTML]{CCE892} $\phantom{-}0.204 \pm 0.049$ &\cellcolor[HTML]{f0fea2} $\phantom{-}0.364 \pm 0.053$ &\cellcolor[HTML]{f0fea2} $\phantom{-}0.371 \pm 0.057$ &\cellcolor[HTML]{c47f51} $\phantom{-}0.452 \pm 0.068$ &\cellcolor[HTML]{CCE892} $\phantom{-}0.252 \pm 0.047$\\ $S_{3}$ (0)&\cellcolor[HTML]{5FA55F} $\phantom{-}0.043 \pm 0.041$ &\cellcolor[HTML]{5FA55F} $-0.056 \pm 0.042$ &\cellcolor[HTML]{5FA55F} $-0.029 \pm 0.043$ &\cellcolor[HTML]{86d2a8} $-0.105 \pm 0.046$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.001 \pm 0.041$\\ $S_{3}$ (1)&\cellcolor[HTML]{5FA55F} $-0.026 \pm 0.045$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.006 \pm 0.041$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.041 \pm 0.035$ &\cellcolor[HTML]{5FA55F} $-0.091 \pm 0.041$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.048 \pm 0.042$\\ $S_{3}$ (2)&\cellcolor[HTML]{5FA55F} $\phantom{-}0.012 \pm 0.043$ &\cellcolor[HTML]{5FA55F} $-0.035 \pm 0.039$ &\cellcolor[HTML]{5FA55F} $-0.095 \pm 0.041$ &\cellcolor[HTML]{5FA55F} $-0.044 \pm 0.038$ &\cellcolor[HTML]{5FA55F} $-0.033 \pm 0.043$\\ $S_{3}$ (3)&\cellcolor[HTML]{5FA55F} $-0.082 \pm 0.044$ &\cellcolor[HTML]{5FA55F} $-0.023 \pm 0.040$ &\cellcolor[HTML]{5FA55F} $-0.041 \pm 0.040$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.013 \pm 0.041$ &\cellcolor[HTML]{5FA55F} $-0.031 \pm 0.043$\\ $S_{3}$ (4)&\cellcolor[HTML]{5FA55F} $-0.060 \pm 0.033$ &\cellcolor[HTML]{5FA55F} $-0.008 \pm 0.033$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.036 \pm 0.033$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.048 \pm 0.038$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.005 \pm 0.033$\\ $S_{4}$ &\cellcolor[HTML]{5FA55F} $-0.081 \pm 0.045$ &\cellcolor[HTML]{86d2a8} $-0.127 \pm 0.041$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.049 \pm 0.040$ &\cellcolor[HTML]{5FA55F} $-0.040 \pm 0.042$ &\cellcolor[HTML]{5FA55F} $-0.080 \pm 0.043$\\ $S_{5}$ &\cellcolor[HTML]{5FA55F} $-0.017 \pm 0.042$ &\cellcolor[HTML]{5FA55F} $-0.082 \pm 0.039$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.002 \pm 0.038$ &\cellcolor[HTML]{5FA55F} $-0.010 \pm 0.039$ &\cellcolor[HTML]{5FA55F} $-0.059 \pm 0.040$\\ $A_{FB}$ &\cellcolor[HTML]{5FA55F} $-0.098 \pm 0.043$ &\cellcolor[HTML]{a8d281} $\phantom{-}0.105 \pm 0.042$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.037 \pm 0.041$ &\cellcolor[HTML]{5FA55F} $-0.047 \pm 0.043$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.028 \pm 0.046$\\ $S_{7}$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.016 \pm 0.043$ &\cellcolor[HTML]{5FA55F} $-0.057 \pm 0.040$ &\cellcolor[HTML]{5FA55F} $-0.049 \pm 0.038$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.011 \pm 0.041$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.073 \pm 0.042$\\ $S_{8}$ &\cellcolor[HTML]{5FA55F} $-0.019 \pm 0.036$ &\cellcolor[HTML]{5FA55F} $-0.018 \pm 0.035$ &\cellcolor[HTML]{5FA55F} $-0.046 \pm 0.039$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.025 \pm 0.041$ &\cellcolor[HTML]{5FA55F} $-0.055 \pm 0.036$\\ $S_{9}$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.025 \pm 0.041$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.028 \pm 0.039$ &\cellcolor[HTML]{5FA55F} $-0.013 \pm 0.042$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.016 \pm 0.043$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.044 \pm 0.041$\\ \hline \multicolumn{6}{c}{}\\ \multicolumn{6}{c}{\textbf{widths}}\\ \hline \textbf{parameter} &[0.25--4.00] &[4.00--8.00] &[11.00--12.50] &[15.00--18.00] &[1.10--6.00]\\ \hline $F_{L}$ (0)&\cellcolor[HTML]{5FA55F} $\phantom{-}0.985 \pm 0.031$ &\cellcolor[HTML]{5FA55F} $\phantom{-}1.033 \pm 0.033$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.902 \pm 0.029$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.950 \pm 0.031$ &\cellcolor[HTML]{5FA55F} $\phantom{-}1.040 \pm 0.033$\\ $F_{L}$ (1)&\cellcolor[HTML]{5FA55F} $\phantom{-}1.047 \pm 0.033$ &\cellcolor[HTML]{5FA55F} $\phantom{-}1.080 \pm 0.034$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.968 \pm 0.031$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.924 \pm 0.030$ &\cellcolor[HTML]{5FA55F} $\phantom{-}1.056 \pm 0.033$\\ $F_{L}$ (2)&\cellcolor[HTML]{5FA55F} $\phantom{-}0.989 \pm 0.031$ &\cellcolor[HTML]{a8d281} $\phantom{-}1.127 \pm 0.036$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.996 \pm 0.032$ &\cellcolor[HTML]{86d2a8} $\phantom{-}0.887 \pm 0.029$ &\cellcolor[HTML]{5FA55F} $\phantom{-}1.040 \pm 0.033$\\ $F_{L}$ (3)&\cellcolor[HTML]{5FA55F} $\phantom{-}1.019 \pm 0.032$ &\cellcolor[HTML]{5FA55F} $\phantom{-}1.099 \pm 0.035$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.957 \pm 0.031$ &\cellcolor[HTML]{86d2a8} $\phantom{-}0.861 \pm 0.028$ &\cellcolor[HTML]{5FA55F} $\phantom{-}1.027 \pm 0.033$\\ $F_{L}$ (4)&\cellcolor[HTML]{5FA55F} $\phantom{-}1.072 \pm 0.034$ &\cellcolor[HTML]{a8d281} $\phantom{-}1.166 \pm 0.037$ &\cellcolor[HTML]{a8d281} $\phantom{-}1.160 \pm 0.040$ &\cellcolor[HTML]{f0fea2} $\phantom{-}1.340 \pm 0.049$ &\cellcolor[HTML]{5FA55F} $\phantom{-}1.057 \pm 0.034$\\ $S_{3}$ (0)&\cellcolor[HTML]{5FA55F} $\phantom{-}0.917 \pm 0.029$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.931 \pm 0.029$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.950 \pm 0.030$ &\cellcolor[HTML]{5FA55F} $\phantom{-}1.018 \pm 0.033$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.920 \pm 0.029$\\ $S_{3}$ (1)&\cellcolor[HTML]{5FA55F} $\phantom{-}0.996 \pm 0.031$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.915 \pm 0.029$ &\cellcolor[HTML]{9ae9cd} $\phantom{-}0.781 \pm 0.025$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.916 \pm 0.029$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.933 \pm 0.029$\\ $S_{3}$ (2)&\cellcolor[HTML]{5FA55F} $\phantom{-}0.961 \pm 0.030$ &\cellcolor[HTML]{86d2a8} $\phantom{-}0.864 \pm 0.027$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.901 \pm 0.029$ &\cellcolor[HTML]{86d2a8} $\phantom{-}0.840 \pm 0.027$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.961 \pm 0.030$\\ $S_{3}$ (3)&\cellcolor[HTML]{5FA55F} $\phantom{-}0.992 \pm 0.031$ &\cellcolor[HTML]{86d2a8} $\phantom{-}0.898 \pm 0.028$ &\cellcolor[HTML]{86d2a8} $\phantom{-}0.877 \pm 0.028$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.904 \pm 0.029$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.962 \pm 0.030$\\ $S_{3}$ (4)&\cellcolor[HTML]{9ae9cd} $\phantom{-}0.746 \pm 0.024$ &\cellcolor[HTML]{9ae9cd} $\phantom{-}0.739 \pm 0.023$ &\cellcolor[HTML]{9ae9cd} $\phantom{-}0.739 \pm 0.024$ &\cellcolor[HTML]{86d2a8} $\phantom{-}0.848 \pm 0.027$ &\cellcolor[HTML]{9ae9cd} $\phantom{-}0.746 \pm 0.024$\\ $S_{4}$ &\cellcolor[HTML]{5FA55F} $\phantom{-}1.013 \pm 0.032$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.910 \pm 0.029$ &\cellcolor[HTML]{86d2a8} $\phantom{-}0.870 \pm 0.028$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.933 \pm 0.030$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.956 \pm 0.030$\\ $S_{5}$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.928 \pm 0.029$ &\cellcolor[HTML]{86d2a8} $\phantom{-}0.872 \pm 0.028$ &\cellcolor[HTML]{86d2a8} $\phantom{-}0.817 \pm 0.027$ &\cellcolor[HTML]{86d2a8} $\phantom{-}0.871 \pm 0.028$ &\cellcolor[HTML]{86d2a8} $\phantom{-}0.885 \pm 0.028$\\ $A_{FB}$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.960 \pm 0.031$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.941 \pm 0.030$ &\cellcolor[HTML]{86d2a8} $\phantom{-}0.823 \pm 0.029$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.921 \pm 0.031$ &\cellcolor[HTML]{5FA55F} $\phantom{-}1.023 \pm 0.032$\\ $S_{7}$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.954 \pm 0.030$ &\cellcolor[HTML]{86d2a8} $\phantom{-}0.899 \pm 0.028$ &\cellcolor[HTML]{86d2a8} $\phantom{-}0.846 \pm 0.027$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.912 \pm 0.029$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.931 \pm 0.029$\\ $S_{8}$ &\cellcolor[HTML]{86d2a8} $\phantom{-}0.810 \pm 0.026$ &\cellcolor[HTML]{9ae9cd} $\phantom{-}0.773 \pm 0.024$ &\cellcolor[HTML]{86d2a8} $\phantom{-}0.860 \pm 0.027$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.905 \pm 0.029$ &\cellcolor[HTML]{86d2a8} $\phantom{-}0.809 \pm 0.026$\\ $S_{9}$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.916 \pm 0.029$ &\cellcolor[HTML]{86d2a8} $\phantom{-}0.881 \pm 0.028$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.930 \pm 0.030$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.941 \pm 0.030$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.922 \pm 0.029$\\ \hline \end{tabular} \captionof{table}[The angular moments pull distribution properties in rare-like pseudoexperiments with folding applied.]{The means and widths of the pull distributions of the angular moments in rare-like pseudoexperiments. 500 pseudoexperiments have been generated, mimicking the rare \BuToKstmm decay. In the fit to the pseudodata, folding is applied. The number at the parameters \FL and $S_3$ indicate the applied folding, as the two parameters can be measured using all five folding techniques. For the rest of the parameters, folding sensitive to the parameter is used. The color scheme ranges from red (overestimation by 50\% of the uncertainty) through green (ideal value) to blue (underestimation by 50\% of the uncertainty), changing in steps of 10\% for readers convenience.} \label{tab:toys-Sig-pull-644} \end{table}