49 lines
10 KiB
TeX
49 lines
10 KiB
TeX
|
\begin{table}[hbt!] \footnotesize \centering
|
||
|
\begin{tabular}{|l|c c c c c|}
|
||
|
\multicolumn{6}{c}{\textbf{means}}\\ \hline
|
||
|
\textbf{parameter} &[0.25--4.00] &[4.00--8.00] &[11.00--12.50] &[15.00--18.00] &[1.10--6.00]\\
|
||
|
\hline
|
||
|
$F_{L}$ (0)&\cellcolor[HTML]{5FA55F} $-0.029 \pm 0.047$ &\cellcolor[HTML]{5FA55F} $-0.025 \pm 0.047$ &\cellcolor[HTML]{CCE892} $\phantom{-}0.218 \pm 0.043$ &\cellcolor[HTML]{f0fea2} $\phantom{-}0.327 \pm 0.044$ &\cellcolor[HTML]{5FA55F} $-0.089 \pm 0.047$\\
|
||
|
$F_{L}$ (1)&\cellcolor[HTML]{a8d281} $\phantom{-}0.136 \pm 0.049$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.074 \pm 0.047$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.092 \pm 0.047$ &\cellcolor[HTML]{CCE892} $\phantom{-}0.214 \pm 0.045$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.049 \pm 0.043$\\
|
||
|
$F_{L}$ (2)&\cellcolor[HTML]{a8d281} $\phantom{-}0.130 \pm 0.049$ &\cellcolor[HTML]{5FA55F} $-0.016 \pm 0.051$ &\cellcolor[HTML]{a8d281} $\phantom{-}0.179 \pm 0.043$ &\cellcolor[HTML]{CCE892} $\phantom{-}0.234 \pm 0.047$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.014 \pm 0.047$\\
|
||
|
$F_{L}$ (3)&\cellcolor[HTML]{5FA55F} $\phantom{-}0.064 \pm 0.045$ &\cellcolor[HTML]{5FA55F} $-0.082 \pm 0.052$ &\cellcolor[HTML]{a8d281} $\phantom{-}0.200 \pm 0.042$ &\cellcolor[HTML]{a8d281} $\phantom{-}0.157 \pm 0.042$ &\cellcolor[HTML]{5FA55F} $-0.040 \pm 0.043$\\
|
||
|
$F_{L}$ (4)&\cellcolor[HTML]{5FA55F} $\phantom{-}0.080 \pm 0.047$ &\cellcolor[HTML]{a8d281} $\phantom{-}0.129 \pm 0.055$ &\cellcolor[HTML]{f0fea2} $\phantom{-}0.367 \pm 0.066$ &\cellcolor[HTML]{c47f51} $\phantom{-}0.478 \pm 0.067$ &\cellcolor[HTML]{5FA55F} $-0.024 \pm 0.046$\\
|
||
|
$S_{3}$ (0)&\cellcolor[HTML]{5FA55F} $\phantom{-}0.012 \pm 0.041$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.047 \pm 0.042$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.094 \pm 0.045$ &\cellcolor[HTML]{f0fea2} $\phantom{-}0.304 \pm 0.046$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.006 \pm 0.043$\\
|
||
|
$S_{3}$ (1)&\cellcolor[HTML]{5FA55F} $\phantom{-}0.082 \pm 0.043$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.043 \pm 0.040$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.070 \pm 0.038$ &\cellcolor[HTML]{CCE892} $\phantom{-}0.211 \pm 0.042$ &\cellcolor[HTML]{5FA55F} $-0.037 \pm 0.043$\\
|
||
|
$S_{3}$ (2)&\cellcolor[HTML]{5FA55F} $\phantom{-}0.009 \pm 0.044$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.011 \pm 0.041$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.076 \pm 0.039$ &\cellcolor[HTML]{CCE892} $\phantom{-}0.244 \pm 0.046$ &\cellcolor[HTML]{5FA55F} $-0.039 \pm 0.046$\\
|
||
|
$S_{3}$ (3)&\cellcolor[HTML]{5FA55F} $-0.034 \pm 0.044$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.066 \pm 0.039$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.054 \pm 0.039$ &\cellcolor[HTML]{a8d281} $\phantom{-}0.185 \pm 0.042$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.024 \pm 0.040$\\
|
||
|
$S_{3}$ (4)&\cellcolor[HTML]{5FA55F} $-0.048 \pm 0.038$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.084 \pm 0.035$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.089 \pm 0.040$ &\cellcolor[HTML]{CCE892} $\phantom{-}0.273 \pm 0.044$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.021 \pm 0.040$\\
|
||
|
$S_{4}$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.046 \pm 0.044$ &\cellcolor[HTML]{a8d281} $\phantom{-}0.190 \pm 0.044$ &\cellcolor[HTML]{a8d281} $\phantom{-}0.172 \pm 0.041$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.043 \pm 0.044$ &\cellcolor[HTML]{a8d281} $\phantom{-}0.105 \pm 0.043$\\
|
||
|
$S_{5}$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.022 \pm 0.045$ &\cellcolor[HTML]{f0fea2} $\phantom{-}0.391 \pm 0.046$ &\cellcolor[HTML]{f0fea2} $\phantom{-}0.344 \pm 0.045$ &\cellcolor[HTML]{CCE892} $\phantom{-}0.263 \pm 0.050$ &\cellcolor[HTML]{a8d281} $\phantom{-}0.181 \pm 0.046$\\
|
||
|
$A_{FB}$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.025 \pm 0.044$ &\cellcolor[HTML]{5FA55F} $-0.093 \pm 0.042$ &\cellcolor[HTML]{Adfff1} $-0.335 \pm 0.043$ &\cellcolor[HTML]{Adfff1} $-0.396 \pm 0.044$ &\cellcolor[HTML]{5FA55F} $-0.038 \pm 0.045$\\
|
||
|
$S_{7}$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.066 \pm 0.042$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.043 \pm 0.040$ &\cellcolor[HTML]{5FA55F} $-0.032 \pm 0.041$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.065 \pm 0.044$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.054 \pm 0.042$\\
|
||
|
$S_{8}$ &\cellcolor[HTML]{5FA55F} $-0.022 \pm 0.041$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.034 \pm 0.038$ &\cellcolor[HTML]{5FA55F} $-0.003 \pm 0.045$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.045 \pm 0.051$ &\cellcolor[HTML]{5FA55F} $-0.030 \pm 0.041$\\
|
||
|
$S_{9}$ &\cellcolor[HTML]{5FA55F} $-0.049 \pm 0.041$ &\cellcolor[HTML]{5FA55F} $-0.035 \pm 0.043$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.007 \pm 0.041$ &\cellcolor[HTML]{5FA55F} $-0.004 \pm 0.047$ &\cellcolor[HTML]{5FA55F} $-0.043 \pm 0.040$\\
|
||
|
\hline
|
||
|
\multicolumn{6}{c}{}\\
|
||
|
\multicolumn{6}{c}{\textbf{widths}}\\ \hline
|
||
|
\textbf{parameter} &[0.25--4.00] &[4.00--8.00] &[11.00--12.50] &[15.00--18.00] &[1.10--6.00]\\
|
||
|
\hline
|
||
|
$F_{L}$ (0)&\cellcolor[HTML]{5FA55F} $\phantom{-}1.036 \pm 0.033$ &\cellcolor[HTML]{5FA55F} $\phantom{-}1.045 \pm 0.033$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.943 \pm 0.030$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.974 \pm 0.031$ &\cellcolor[HTML]{5FA55F} $\phantom{-}1.036 \pm 0.033$\\
|
||
|
$F_{L}$ (1)&\cellcolor[HTML]{5FA55F} $\phantom{-}1.092 \pm 0.035$ &\cellcolor[HTML]{5FA55F} $\phantom{-}1.045 \pm 0.033$ &\cellcolor[HTML]{5FA55F} $\phantom{-}1.042 \pm 0.033$ &\cellcolor[HTML]{5FA55F} $\phantom{-}1.000 \pm 0.032$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.962 \pm 0.030$\\
|
||
|
$F_{L}$ (2)&\cellcolor[HTML]{5FA55F} $\phantom{-}1.027 \pm 0.035$ &\cellcolor[HTML]{5FA55F} $\phantom{-}1.064 \pm 0.036$ &\cellcolor[HTML]{86d2a8} $\phantom{-}0.895 \pm 0.031$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.971 \pm 0.033$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.988 \pm 0.034$\\
|
||
|
$F_{L}$ (3)&\cellcolor[HTML]{5FA55F} $\phantom{-}0.996 \pm 0.032$ &\cellcolor[HTML]{a8d281} $\phantom{-}1.168 \pm 0.037$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.938 \pm 0.030$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.927 \pm 0.029$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.971 \pm 0.031$\\
|
||
|
$F_{L}$ (4)&\cellcolor[HTML]{5FA55F} $\phantom{-}1.024 \pm 0.033$ &\cellcolor[HTML]{a8d281} $\phantom{-}1.190 \pm 0.039$ &\cellcolor[HTML]{f0fea2} $\phantom{-}1.340 \pm 0.047$ &\cellcolor[HTML]{f0fea2} $\phantom{-}1.376 \pm 0.048$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.997 \pm 0.032$\\
|
||
|
$S_{3}$ (0)&\cellcolor[HTML]{5FA55F} $\phantom{-}0.905 \pm 0.029$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.928 \pm 0.030$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.991 \pm 0.032$ &\cellcolor[HTML]{5FA55F} $\phantom{-}1.003 \pm 0.032$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.955 \pm 0.031$\\
|
||
|
$S_{3}$ (1)&\cellcolor[HTML]{5FA55F} $\phantom{-}0.971 \pm 0.031$ &\cellcolor[HTML]{86d2a8} $\phantom{-}0.895 \pm 0.028$ &\cellcolor[HTML]{86d2a8} $\phantom{-}0.851 \pm 0.027$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.926 \pm 0.029$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.961 \pm 0.030$\\
|
||
|
$S_{3}$ (2)&\cellcolor[HTML]{5FA55F} $\phantom{-}0.918 \pm 0.031$ &\cellcolor[HTML]{86d2a8} $\phantom{-}0.858 \pm 0.029$ &\cellcolor[HTML]{86d2a8} $\phantom{-}0.804 \pm 0.027$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.945 \pm 0.032$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.949 \pm 0.032$\\
|
||
|
$S_{3}$ (3)&\cellcolor[HTML]{5FA55F} $\phantom{-}0.976 \pm 0.031$ &\cellcolor[HTML]{86d2a8} $\phantom{-}0.873 \pm 0.028$ &\cellcolor[HTML]{86d2a8} $\phantom{-}0.867 \pm 0.028$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.936 \pm 0.030$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.904 \pm 0.029$\\
|
||
|
$S_{3}$ (4)&\cellcolor[HTML]{86d2a8} $\phantom{-}0.829 \pm 0.027$ &\cellcolor[HTML]{9ae9cd} $\phantom{-}0.762 \pm 0.025$ &\cellcolor[HTML]{86d2a8} $\phantom{-}0.872 \pm 0.028$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.964 \pm 0.031$ &\cellcolor[HTML]{86d2a8} $\phantom{-}0.882 \pm 0.028$\\
|
||
|
$S_{4}$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.992 \pm 0.031$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.984 \pm 0.031$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.913 \pm 0.029$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.987 \pm 0.031$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.960 \pm 0.030$\\
|
||
|
$S_{5}$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.939 \pm 0.032$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.950 \pm 0.032$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.921 \pm 0.032$ &\cellcolor[HTML]{5FA55F} $\phantom{-}1.041 \pm 0.036$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.968 \pm 0.033$\\
|
||
|
$A_{FB}$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.955 \pm 0.031$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.923 \pm 0.030$ &\cellcolor[HTML]{86d2a8} $\phantom{-}0.890 \pm 0.031$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.945 \pm 0.031$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.994 \pm 0.032$\\
|
||
|
$S_{7}$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.932 \pm 0.030$ &\cellcolor[HTML]{86d2a8} $\phantom{-}0.886 \pm 0.028$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.904 \pm 0.029$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.978 \pm 0.031$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.938 \pm 0.030$\\
|
||
|
$S_{8}$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.904 \pm 0.029$ &\cellcolor[HTML]{86d2a8} $\phantom{-}0.828 \pm 0.027$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.970 \pm 0.032$ &\cellcolor[HTML]{a8d281} $\phantom{-}1.101 \pm 0.036$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.903 \pm 0.029$\\
|
||
|
$S_{9}$ &\cellcolor[HTML]{86d2a8} $\phantom{-}0.896 \pm 0.029$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.959 \pm 0.031$ &\cellcolor[HTML]{5FA55F} $\phantom{-}0.902 \pm 0.029$ &\cellcolor[HTML]{5FA55F} $\phantom{-}1.027 \pm 0.033$ &\cellcolor[HTML]{86d2a8} $\phantom{-}0.879 \pm 0.028$\\
|
||
|
\hline
|
||
|
\end{tabular}
|
||
|
\captionof{table}[The angular moments pull distribution properties in rare-like pseudoexperiments with folding applied, \swave set to zero.]{The means and widths of the pull distributions in rare-like pseudoexperiments. 500 pseudoexperiments have been generated, mimicking the rare \BuToKstmm decay. In the fit to the pseudodata, folding is applied. The number at the parameters \FL and $S_3$ indicate the applied folding, as the two parameters can be measured using all folding techniques. The color scheme ranges from red (overestimation by 50\% of the uncertainty) through green (ideal value) to blue (underestimation by 50\% of the uncertainty), changing in steps of 10\% for readers convenience. } \label{tab:toys-Sig-pull-632}
|
||
|
\end{table}
|
||
|
|
||
|
|