105 lines
4.5 KiB
TeX
105 lines
4.5 KiB
TeX
|
%==========================================
|
||
|
%
|
||
|
% Appendices related to the selection
|
||
|
%
|
||
|
%==========================================
|
||
|
|
||
|
\section{Event selection}
|
||
|
|
||
|
\subsection{Crystal Ball function}\label{app:CrystalBall}
|
||
|
|
||
|
The Crystal Ball function is a probability density function widely used to model processes with losses \cite{APP-CB}.
|
||
|
It consists of a gaussian core and one power-law low end tail, that describes the loss, typically from the final state radiation. The function got its name from the Crystal Ball collaboration \cite{APP-CBCollab}.
|
||
|
The experiment was placed at the SPEAR accelerator at SLAC National Laboratory and designed as a spark chamber surrounded by an almost complete sphere (covering 98\% of the solid angle) made of scintillating crystals. Therefore, the detector got its prophetic name. The detector is operating until today.
|
||
|
It is located in Mainz, placed at the MAMI microtron \cite{APP-CBMainz}.
|
||
|
|
||
|
The Crystal Ball function is then defined as
|
||
|
\begin{equation}
|
||
|
\mathcal{P}(x;\alpha,n,\bar x,\sigma) = N \cdot
|
||
|
\begin{cases}
|
||
|
\exp(- \frac{(x - \bar x)^2}{2 \sigma^2}), & \mbox{for }\frac{x - \bar x}{\sigma} > -\alpha \\
|
||
|
A \cdot (B - \frac{x - \bar x}{\sigma})^{-n} & \mbox{for }\frac{x - \bar x}{\sigma} \leqslant -\alpha
|
||
|
\end{cases}\,,
|
||
|
\end{equation}
|
||
|
where $A$ and $\alpha$ and $n$ describe the tail, $\mu$ and $\sigma$ are the mean and the width of the peak. $N$ is a normalization factor, $A$ and $B$ are constants defined as:
|
||
|
\begin{align}
|
||
|
\begin{split}
|
||
|
A &= \left(\frac{n}{\left| \alpha \right|}\right)^n \cdot \exp\left(- \frac {\left| \alpha \right|^2}{2}\right)\,,\\
|
||
|
B &= \frac{n}{\left| \alpha \right|} - \left| \alpha \right|\,.\\
|
||
|
%N &= \frac{1}{\sigma (C + D)}\,,\\
|
||
|
%C &= \frac{n}{\left| \alpha \right|} \cdot \frac{1}{n-1} \cdot \exp\left(- \frac {\left| \alpha \right|^2}{2}\right)\,,\\
|
||
|
%D &= \sqrt{\frac{\pi}{2}} \left(1 + \operatorname{erf}\left(\frac{\left| \alpha \right|}{\sqrt 2}\right)\right)\,.
|
||
|
\end{split}
|
||
|
\end{align}
|
||
|
%
|
||
|
%The $\operatorname{erf}$ is Gauss error function defined as
|
||
|
%
|
||
|
%\begin{equation}
|
||
|
% erf(z) =\frac{2}{\sqrt\pi}\int_0^z e^{-t^2}\,dt\,.
|
||
|
%\end{equation}
|
||
|
|
||
|
\subsubsection{Double sided Crystal Ball function}
|
||
|
|
||
|
The Crystal Ball function can be extended to contain a gaussian core and two power-law low end tails.
|
||
|
The double sided Crystal Ball function is then defined as
|
||
|
%
|
||
|
\begin{align}
|
||
|
\mathcal{P}_{CB}(x; x_{peak}, \sigma, n_1, n_2, \alpha_1, \alpha_2) = N \cdot
|
||
|
\begin{cases}
|
||
|
A_1\cdot(B_1 - \frac{x-x_{peak}}{\sigma})^{-n_1} & $for $ \frac{x - x_{peak}}{\sigma} \leq -\alpha_1
|
||
|
\vspace*{0.3cm}\\
|
||
|
\exp(\frac{-(x - x_{peak})^{2}}{2\sigma^{2}}) & $for $ -\alpha_1 \leq \frac{x - x_{peak}}{\sigma} \leq \alpha_2
|
||
|
\vspace*{0.3cm}\\
|
||
|
A_2\cdot(B_2 - \frac{x-x_{peak}}{\sigma})^{-n_2} & $for $ \alpha_2 \leq \frac{x - x_{peak}}{\sigma}
|
||
|
\end{cases}
|
||
|
\,,
|
||
|
\end{align}
|
||
|
%
|
||
|
$N$ is a normalization factor, $A_{1,2}$ and $B_{1,2}$ are constants defined as:
|
||
|
\begin{align}
|
||
|
\begin{split}
|
||
|
A_{1,2}= & ( \frac{n_{1,2}}{\abs{n_{1,2}}} )^{n_{1,2}} \cdot \exp(\pm\frac{\alpha_{1,2}^{2}}{2}),
|
||
|
\vspace*{0.3cm}\\
|
||
|
B_{1,2}= & \frac{n_{1,2}}{\abs{\alpha_{1,2}}} - \abs{\alpha_{1,2}}.
|
||
|
\end{split}
|
||
|
\end{align}
|
||
|
|
||
|
|
||
|
|
||
|
\subsection{ExpGaus function}\label{app:ExpGaus}
|
||
|
|
||
|
ExpGaus function is a function used to describe partially reconstructed backgrounds in \B~meson decays. The definition is in \refEq{App-ExpGaus}. The $\mu$ denotes the mean of the distribution, $\sigma$ is the variance of the function, D is a constant representing the decay of the B meson.
|
||
|
%
|
||
|
\begin{align}\label{eq:App-ExpGaus}
|
||
|
f_{EG}(x) =
|
||
|
\begin{cases}
|
||
|
\exp\left(-\frac{\mu-D}{\sigma^2} \left(x-D\right)\right) \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right) & \text{if } x \leq D\\
|
||
|
\exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right) & \text{otherwise}
|
||
|
\end{cases}
|
||
|
\,.
|
||
|
\end{align}
|
||
|
|
||
|
%\clearpage
|
||
|
|
||
|
|
||
|
%\subsection{Correction to the simulation}\label{app:SimulationCorrection}
|
||
|
%\todo[inline]{\piz pseudorapidity resolution: data does not agree with MC, see talk from 2018\_05\_14}
|
||
|
%
|
||
|
%\clearpage
|
||
|
|
||
|
\subsection{Reweighted distributions of parameters used for the MLP training}\label{app:CompareVariables}
|
||
|
|
||
|
\input{./figures/fig_CompareVariables}
|
||
|
%\input{./figures/fig_CompareVariables_sig}
|
||
|
|
||
|
%\clearpage
|
||
|
|
||
|
%\subsection{\lone trigger efficiency}\label{app:L0Eff}
|
||
|
%\input{Chapters/EventSelection/L0Efficiency}
|
||
|
%
|
||
|
\clearpage
|
||
|
|
||
|
\subsection[Signal yield in bins of the dimuon invariant mass squared]{Signal yield in bins of the dimuon invariant mass squared}\label{app:yield_q2}
|
||
|
\input{Chapters/EventSelection/FitsInQ2}
|
||
|
|
||
|
\clearpage
|