Angular analysis of B+->K*+(K+pi0)mumu
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

521 lines
22 KiB

//Renata Kopecna
#include <mainfit.hh>
#include <fstream>
#include <sstream> // std::istringstream
#include <event.hh>
#include <fitter.hh>
#include <folder.hh>
#include <paths.hh>
#include <funcs.hh>
#include <design.hh>
#include <helpers.hh>
#include <constants.hh>
#include <bu2kstarmumu_generator.hh>
#include <bu2kstarmumu_plotter.hh>
#include <bu2kstarmumu_parameters.hh>
#include <spdlog.h>
#include <TStyle.h>
int mainfit(fcnc::options opts, basic_params params, bool fitReference, bool fitToy, bool likelihoodScan, bool FeldmanCousin){
//TODO
bool fitData = !fitToy;
//TODO: add a test where I cna try this on a toy file
if(fitData) spdlog::info("[FIT]\tFit signal data"); //signal data << FINAL FIT!!
if(fitReference)spdlog::info("[FIT]\tFit reference channel: J/psi K*+"); //reference channel only
//--------------------------------
// Set all the options
//--------------------------------
//TODO: declare maybe in the header or elsewhere
const bool UseBinnedFit = !fitReference;
const bool SimultaneousFit = true;
const bool FixAngularBckgnd = false; //Fix the background to the shape of the upper mass sideband
const bool constrainBmass = false;
const bool FixedSwave = !fitReference; //TODO
const bool ConstrainedSwave = false; //TODO
const bool ConstrainedFS = false; //TODO
const bool LoadFSfrom2Dfit = !fitReference && !(opts.systematic > -1);
//const bool JpsiWithRareStats = false; //Try to fit the Jpsi fit with only a subsample of events //TODO
const double fractionOfStats = 1.0; //Use only a fraction of statistics, eg for half set this to 0.5
//TODO: set the fraction of stats accordingly if JpsiWithRareStats; will make my life easier
const bool NP = false; //TODO
const bool Blind = fitData && !fitReference;
const bool plotPulls = true; //Do you wanna pull plots with or without pulls?
bool plotSignalRegion = fitReference; //Plot only the region around B mass, makes nicer plots
const unsigned int nBins = UseBinnedFit ? opts.get_nQ2bins() : 1;
if (fitToy && params.polarity!= 0){
spdlog::warn("Your polarity is not set to both ofr whatever reason when fitting a toy!");
spdlog::warn("Setting the polarity to 0!");
params.polarity = 0;
}
//------------------------------------------------------------------------------------------------
if((int)ConstrainedSwave + (int) ConstrainedFS + (int) LoadFSfrom2Dfit > 1){
//If at least two of those, then crash
spdlog::error("Use only one option to constrain FS:");
spdlog::error("Constrained sWave" + boolToString(ConstrainedSwave));
spdlog::error("Constrained FS" + boolToString(ConstrainedFS));
spdlog::error("Load FS from 2D fit" + boolToString(LoadFSfrom2Dfit));
assert(0);
}
opts.fit_full_angular_bkg = true; //fold also the bkg?
opts.individual_penalties = false;
//If blinded, don't plot anything
opts.write_eps = !Blind;
opts.write_pdf = false;
opts.write_C = false;
//Fit both angles and mass
opts.only_angles = false;
opts.only_Bmass = false;
//Fit swave?
opts.swave = true;
//Use weights
opts.weighted_fit = true;
//What framework?
opts.shift_lh = false;
opts.hesse_postrun = true;
opts.squared_hesse = true;//params.folding>-1;
opts.minos_errors = false;// params.folding==-1;
//Flat background?
opts.flat_bkg = false;
//What order of bkg
opts.bkg_order_costhetak = 5;
opts.fit_mkpi = true; //Use fit to Kpi mass?
opts.use_mkpi = false; //Do the 5D fit? //TODO: probably doesn't work now
opts.simple_mkpi = false;
opts.isobar = false;
opts.asymptotic = false; //Use the improved hesse calculation?
//Check that sWave is on when fitting Kpi mass
assert(!(opts.fit_mkpi && !opts.swave));
assert(!(opts.use_mkpi && !opts.swave));
//Use angular acceptance corrections
opts.update_efficiencies = true;
//generate nametag for root file to save results:
std::string results_file = final_result_name(fitReference, false, params,
SimultaneousFit, nBins, params.Run,
fitToy, fractionOfStats,
NP, -1); //FitOnlyRun is not reflected in opts here TODO
//Set the available PDFs: this depends on the selected Run for now, so if only one is selected, run over one pdf, if both, use two
std::vector<UInt_t> pdf_idx;
if (params.Run == 1 || params.Run == 12) pdf_idx.push_back(1);
if (params.Run == 2 || params.Run == 12) pdf_idx.push_back(2);
//--------------------------------
// Load data
//--------------------------------
spdlog::info("[FIT]\tLoading data...");
std::vector<std::vector<fcnc::event>>events;
if(fitToy){
events.push_back(fcnc::load_events(get_finalToys_file(fitReference,nBins, SimultaneousFit, params,1),"Events", -1)); //Run1
events.push_back(fcnc::load_events(get_finalToys_file(fitReference,nBins, SimultaneousFit, params,2),"Events", -1)); //Run2
}
else{
std::vector<fcnc::event> tmp = fcnc::load_events(get_theFCNCpath(0,1), "Events", -1); //Run1
if (!fitReference) events.push_back(fcnc::filterResonances(tmp));
else events.push_back(tmp);
tmp = fcnc::load_events(get_theFCNCpath(0,2), "Events", -1); //Run2
if (!fitReference) events.push_back(fcnc::filterResonances(tmp));
else events.push_back(tmp);
}
//check that the number of pdfs is the same as number of event vectors
if (pdf_idx.size() != events.size()){
spdlog::error("Something went very wrong when loading the events and setting the pdfs.");
spdlog::error("The number of PDFs != number of event vectors: {0:d} vs {1:d}",pdf_idx.size(), events.size());
return 5;
}
//we are good to go, now; how many individual pdfs are used?
const UInt_t nPDFs = pdf_idx.size();
//Control print of the loaded events
UInt_t N_tot = 0;
for (UInt_t n = 0; n < nPDFs; n++){
spdlog::debug("Event vector {0:d}:\t"+(Blind?"Larger 1 ":std::to_string(events.at(n).size())),n);
if (events.at(n).size()==0){
spdlog::error("Empty event vector!");
return 404;
}
N_tot += events.at(n).size();
}
spdlog::info("Total number of used events:\t{0:d}", N_tot);
//Set fit ranges //TODO: just move it to init angle parameters
double angleRange = 1.0;
double PprimeRangeScale = 10.0;
if (params.usePprime) angleRange *= PprimeRangeScale;
double angleStepSize = 0.1;
//get signal fractions and event numbers
//TODO: fix this when you know whether we need the eventNumbers here specifically
double sig_frac[nBins];
unsigned int event_numbers[nBins][nPDFs];
for(unsigned int b = 0; b < nBins; b++){
for(unsigned int n = 0; n < nPDFs; n++){
//get event numbers and signal fraction from global function, given the total number of events
//TODO: check what to do with JpsiWithRareStats
EventNumbers(b, n, sig_frac[b], event_numbers[b][n], N_tot, nBins, nPDFs);
event_numbers[b][n] *= fractionOfStats;
}
}
//Control print
for(unsigned int b = 0; b < nBins; b++){
for(unsigned int n = 0; n < nPDFs; n++){
spdlog::debug("q2bin={0:d}\tPDF={1:d}\tf_sig={2:f}\tN={3:d}", b, n, sig_frac[b], event_numbers[b][n]);
}
}
//create the fitter, plotter, parameteres and pdfs
fcnc::fitter f(&opts);
fcnc::folder fldr(&opts);
fcnc::options theOptions[nPDFs];
fcnc::bu2kstarmumu_plotter * thePlotter[nPDFs];
std::vector<fcnc::parameters*> theParams [nBins];
std::vector<fcnc::pdf*> theProbs [nBins];
std::vector< std::vector<fcnc::event>* > selection[nBins];
//these parameters are common:
std::vector<std::string> common_params = param_string(opts, false); //set MC to true to avoid background there
spdlog::info("Shared parameters: " + convert_vector_to_string(common_params));
//set common parameters:
if(SimultaneousFit) f.set_common_parameters(common_params);
//Get the name of files needed for constraining
std::string signalMCFile = final_result_name_MC(params, nBins, false, false, SimultaneousFit, false, false);
std::string refrenceMCFile = final_result_name_MC(params, 1, true, false, SimultaneousFit, false, true);
bool takeAngBkgFromRef = true;
std::string upperMassBkgFile = final_result_name_bkg(takeAngBkgFromRef ? 1 : nBins, takeAngBkgFromRef, false, true, false, params);
std::string upperMassKpiBkgFile = final_result_name_bkg(takeAngBkgFromRef ? 1 : nBins, takeAngBkgFromRef, false, true, true, params);
std::string RefMassFile = final_result_name_mass(true,1,true,params,params.Run);
for(UInt_t n = 0; n < nPDFs; n++){
spdlog::debug("PDF {0:d}", n);
UInt_t idx = pdf_idx.at(n);
opts.update_angle_ranges(); //Set angles in options back to defaults
opts.update_efficiencies = true; //This ensures the acceptance weights to be taken into account.
//Set the label
if (fitToy) opts.plot_label = "Toy sample";
else opts.plot_label = "LHCb data";
opts.name = std::to_string(idx+1) + "_"+ get_eps_label(fitReference,false,false,fitToy, nBins, -1,-SimultaneousFit,params); //TODO: FIX THIS!!!
//Set the options and init the plotter
theOptions[n] = opts;
theOptions[n].run = pdf_idx.at(n); //Set proper run to options
thePlotter[n] = new fcnc::bu2kstarmumu_plotter(&theOptions[n]);
for(unsigned int b = 0; b < nBins; b++){
theOptions[n].q2_min = theOptions[n].TheQ2binsmin.at(b) ;
theOptions[n].q2_max = theOptions[n].TheQ2binsmax.at(b);
//create parameter sets
fcnc::bu2kstarmumu_parameters * leParameters = new fcnc::bu2kstarmumu_parameters(&theOptions[n]);
//create PDFs
fcnc::bu2kstarmumu_pdf * lePDF = new fcnc::bu2kstarmumu_pdf(&theOptions[n], leParameters);
//define center of q2bin as effective q2 by hand
leParameters->eff_q2.init_fixed(bin_center_q2(theOptions[n],b));
//Init mass
std::string fileName_dataMass = final_result_name_mass(true, 1, true, params, params.Run);
leParameters->init_Bmass(fileName_dataMass,pdf_idx.at(n),0.5,fixConstr(false,constrainBmass));
//initiate the sig/bkg fraction for mass fit
leParameters->f_sig.init(fitReference ? 0.8 : 0.3, 0.0, 1.0, 0.05);
//Init mass parameters
leParameters->init_mass_parameters(n,nBins,b,0.01);
leParameters->fix_param_from_rootfile(fitReference ? refrenceMCFile : signalMCFile,
{"alpha_1","alpha_2","n_1","n_2"}, idx, b);
//Fix the mass mean to the one from reference channel
if (!fitReference) leParameters->init_Bmass(RefMassFile, pdf_idx.at(n), 0.0, fixConstr(true,false));
//Init the ratio of sigmas in signal MC/reference MC
if (!fitReference) leParameters->m_scale.init_fixed(get_sigmaRatio_fromMC(params,nBins,b,pdf_idx.at(n)));
else leParameters->m_scale.init_fixed(1.0);
//Init mass background
leParameters->init_mass_background_parameters(nBins,b,opts.fit_lambda);
//(de)activate S-wave
double swaveStepSize = opts.swave && !FixedSwave ? 0.1 : 0.0;
//Init the Kstar mass fit
if(opts.fit_mkpi || opts.use_mkpi){
//p-wave
leParameters->init_mkpi_pWave_parameters(fitReference,0.0);
leParameters->init_kpi_background_parameters(fitReference,0.05);
//s-wave
if (opts.swave) leParameters->init_mkpi_sWave_parameters(fitReference, 0.0);
}
//Init the sWave
if (opts.swave){
leParameters->init_sWave_parameters(swaveStepSize);
leParameters->get_param_from_rootfile(RefMassFile, {"FS"}, idx, b,fixConstr(!fitReference,ConstrainedFS));
}
//Add angular parameters
leParameters->init_angular_parameters(nBins,b,angleStepSize,angleRange, Blind);
//Add background to angular observables
if(!theOptions[n].flat_bkg){ //If bkg not flat, init based on upper mass sideband fit
leParameters->get_param_from_rootfile(upperMassBkgFile,
PAR_BKG_STRING(opts.folding,opts.bkg_order_costhetal,opts.bkg_order_costhetak),
params.Run,b,fixConstr(FixAngularBckgnd,false));
if (params.folding ==4){
leParameters->cbkgctk2.init(-1.75,-3.0,1.5,0.05);
leParameters->cbkgctk4.init(-1.75,-3.0,1.5,0.05);
}
}
//make sure all configured values are also the start_value:
leParameters->take_current_as_start();
//Add the parameters and the pdf into the vectors
theParams[b].push_back(leParameters);
theProbs [b].push_back(lePDF);
spdlog::info("[PDF{0:d}]\tSaved PDF and parameters!", n);
//Load the events
std::vector<fcnc::event> * leEvents = new std::vector<fcnc::event>;
//choose events from the event vector and sort corresponding to q2bin or non-resonant:
//If use all events, just keep the numbers as they are
UInt_t NNN = events[n].size()*fractionOfStats; // UInt_t NNN = fractionOfStats == 1 ? events[n].size() : 0.5 + event_numbers[b][n];
//This randomly pre-selected list of events is used, if not all events are wanted (eg if JpsiWithRareStats)
std::vector<UInt_t> event_idxs(NNN);
if(fractionOfStats != 1.0){
event_idxs = fcnc::GetNOutOfM(NNN, events[n].size(), 0, false, false);
}
else{
std::iota (std::begin(event_idxs), std::end(event_idxs), 0); //This just puts 0,1,2,3,... into a vector
}
spdlog::info("Running fitter with a total number of events of: {0:d}", event_idxs.size());
for_indexed(auto e: event_idxs){
//if (i%2!=0) continue;
fcnc::event meas = events[n].at(e);
//Cut on B mass
if(meas.m < B_MASS_LOW || meas.m > B_MASS_HIGH) continue;
//Select either magUp or magDown
if(params.polarity==1 && meas.magnet > 0) continue;
if(params.polarity==-1 && meas.magnet < 0) continue;
//Select only events in the given bin
if(meas.q2 < theOptions[n].TheQ2binsmin.at(b) || meas.q2 > theOptions[n].TheQ2binsmax.at(b)) continue;
//Cut on Kpi mass
if(meas.mkpi < opts.mkpi_min || meas.mkpi > opts.mkpi_max) continue;
//Fold if needed
if(!filterFldFour(&meas, &theOptions[n])) continue; //remove ctk events
if(!opts.full_angular) fldr.fold(&meas);
leEvents->push_back(meas);
}
//Load the acceptance correction
lePDF->load_coeffs_eff_phsp_4d();
lePDF->update_cached_normalization(leParameters);
lePDF->update_cached_efficiencies(leParameters, leEvents);
spdlog::info("[PDF{0:d}]\tFinished selecting the events: {1:d}",n, leEvents->size());
//save event vector in vector
selection[b].push_back(leEvents);
if(selection[b].back()->size() > 0){
spdlog::info("[PDF{0:d}]\t[BIN{1:d}]\tDone!", n, b);
}
else{
spdlog::critical("No events found for PDF={0:d} and q2-bin={1:d}. Exit!",n,b);
assert(0);
}
} //end loop over bins
theOptions[n].update_efficiencies = false; //Prevent multiple weights
} //end loop over PDFs
//Measure the time for the fit:
runTime timer = runTime();
//Save the fit results
std::vector<int>fit_results[nBins];
std::vector<double>f_sigs[nBins];
std::vector<double>f_sigserr[nBins];
std::vector<UInt_t>evts_cntr[nBins];
//--------------------------------
// FIT
//--------------------------------
spdlog::info("[FIT]\tFit started.");
for(unsigned int b = 0; b < nBins; b++){
//Start the clock
timer.start();
time_t startTime = time(0);
spdlog::info("[START]\tStart the fit for bin #{0:d}", b);
//fit the events:
const bool do_fit = !FeldmanCousin; //TODO: ask David wtf
int fitresult = 0;
if(do_fit){
if(!SimultaneousFit){
for(UInt_t n = 0; n < nPDFs; n++){
UInt_t idx = pdf_idx.at(n);
spdlog::info("[FIT{0:d}]\tRunning the fitter...", idx);
fitresult = f.fit(theProbs[b].at(n), theParams[b].at(n), selection[b].at(n));
fit_results[b].push_back(fitresult);
}
}
else{
spdlog::info("[FIT]\tFitting the following events simultaenously:");
for(UInt_t s = 0; s < selection[b].size(); s++) spdlog::info("PDF #{0:d}: {1:d}", pdf_idx.at(s), selection[b].at(s)->size());
fitresult = f.fit(theProbs[b], theParams[b], selection[b]);
fit_results[b].push_back(fitresult);
spdlog::info("Q2BIN={0:d}\tLLH={1:f}", b, f.likelihood());
//run likelihood profile scan //TODO: fix and implement
if(likelihoodScan) return 5;
//run feldman cousins //TODO: fix and implement
if(FeldmanCousin) return 5;
}
}
else{ //in case of not fit, just update the pdfs....?
for(UInt_t n = 0; n < nPDFs; n++){
theProbs[b].at(n)->update_cached_efficiencies(theParams[b].at(n), selection[b].at(n));
fit_results[b].push_back(fitresult);
}
}
//Stop the clock
timer.stop(startTime);
//save signal fraction and event number for each bin and each pdf:
for(UInt_t n = 0; n < nPDFs; n++){
f_sigs[b] .push_back(((fcnc::bu2kstarmumu_parameters *) theParams[b].at(n))->f_sig.get_value());
f_sigserr[b].push_back(((fcnc::bu2kstarmumu_parameters *) theParams[b].at(n))->f_sig.get_error());
evts_cntr[b].push_back(selection[b].at(n)->size());
}
//plot each set of pdfs with the data points:
bool do_plot = !(likelihoodScan || FeldmanCousin);
if (do_plot){
for(UInt_t n = 0; n < nPDFs; n++){
std::string eps_label = get_eps_label(fitReference,false, false, fitToy,
params.nBins, b,
params.polarity,
SimultaneousFit, theOptions[n]);
theOptions[n].q2_label = q2_label(opts.TheQ2binsmin.at(b), opts.TheQ2binsmax.at(b));
spdlog::info("[PLOT]\t"+eps_label);
thePlotter[n]->SetPulls(plotPulls);
if (plotSignalRegion) thePlotter[n]->plot_data((fcnc::bu2kstarmumu_pdf*)theProbs[b].at(n), (fcnc::bu2kstarmumu_parameters*)theParams[b].at(n), selection[b].at(n), get_MainFitPlot_path(), eps_label, plotSignalRegion);
thePlotter[n]->plot_data((fcnc::bu2kstarmumu_pdf*)theProbs[b].at(n), (fcnc::bu2kstarmumu_parameters*)theParams[b].at(n), selection[b].at(n), get_MainFitPlot_path(), eps_label+"_incBkg", false);
}
//plot both PDFs together
std::vector<fcnc::bu2kstarmumu_pdf*> * prober = (std::vector<fcnc::bu2kstarmumu_pdf*> *) & theProbs[b];
std::string eps_label = get_eps_label(fitReference,false, false, fitToy,
params.nBins, b,
params.polarity,
SimultaneousFit, opts);
std::vector<fcnc::bu2kstarmumu_parameters*> * paramser = (std::vector<fcnc::bu2kstarmumu_parameters*> *) & theParams[b];
thePlotter[0]->SetPulls(plotPulls);
if (plotSignalRegion) thePlotter[0]->plot_added_pdfs(prober, paramser, & selection[b], get_MainFitPlot_path(), eps_label, plotSignalRegion); //TODO add prefix to the plots
thePlotter[0]->plot_added_pdfs(prober, paramser, & selection[b], get_MainFitPlot_path(), eps_label+"_incBkg", false);
}//end do_plot
}//end loop over bins for fitter
if(likelihoodScan || FeldmanCousin) return 5; //Not implemented yet
//--------------------------------
// Print & Save
//--------------------------------
//Print running time
timer.print(nBins);
if (!Blind) print_all_parameters(nBins, pdf_idx, theParams, spdlog::level::debug);
//Save the fit results into a txt file in case
for(UInt_t n = 0; n < nPDFs; n++){
for(unsigned int b = 0; b < nBins; b++){
//Print all fit results
for(unsigned int b = 0; b < nBins; b++){
spdlog::info("[BIN{0:d}]:\tFitresult: {1:d}", b, fit_results[n].at(b));
}
std::string txtFile = get_MainFitResult_path() + "fitresult_"
+ get_eps_label(fitReference,false, false, fitToy,
params.nBins, b,
params.polarity,
SimultaneousFit, theOptions[n])+ ".txt";
((fcnc::bu2kstarmumu_parameters *) theParams[b].at(n))->save_param_values(txtFile);
}
}
//Print signal yield in the terminal and to a tex file
if (!Blind){
print_sig_yields(nBins, pdf_idx, evts_cntr, f_sigs, f_sigserr);
print_bkg_yields(nBins, pdf_idx, evts_cntr, f_sigs, f_sigserr);
}
print_sig_yields_tex(get_eps_label(fitReference,false, false, fitToy,
params.nBins, -1,
params.polarity,
SimultaneousFit, opts),
nBins, pdf_idx, &opts, evts_cntr, f_sigs, f_sigserr);
//saving results to root file TODO
save_results(results_file,nBins,pdf_idx,fit_results,theParams,SimultaneousFit,&opts);
spdlog::info("Finished fit.");
return 0;
}