EWP-BplusToKstMuMu-AngAna/Code/FCNCFitter/sources/Core/toystudy.cc

356 lines
16 KiB
C++

/**
* @file toystudy.cc
* @author Renata Kopecna (cause I find 500 lines functioned defined in a header disgusting)
* @date 2021-02-25
*
*/
#include <toystudy.hh>
#include <iostream>
#include <event.hh>
#include <parameters.hh>
#include <funcs.hh>
#include <pdf.hh>
#include <options.hh>
#include <fitter.hh>
#include <generator.hh>
#include <multifit.hh>
void fcnc::toystudy::toy(unsigned int nevents, unsigned int nruns, pdf* prob, parameters* params, generator* gen){
std::vector<unsigned int> the_nevents;
the_nevents.push_back(nevents);
std::vector<pdf*> probs;
probs.push_back(prob);
std::vector<parameters*> the_params;
the_params.push_back(params);
std::vector<generator*> gens;
gens.push_back(gen);
toy(the_nevents, nruns, probs, the_params, gens);
}
void fcnc::toystudy::toy(std::vector<unsigned int> nevents, unsigned int nruns, std::vector<pdf*> pdfs, std::vector<parameters*> params, std::vector<generator*> gens){
//Open texFile
std::ofstream myFile;
open_Latex_noteFile(latex_toyFile(), myFile);
spdlog::info("Starting toy study on toy data");
//unsigned int run_no = 0;
spdlog::info("Will run over {0:d} runs with {1:d}", nruns, nevents.at(0));
if (spdlog_info()){
for (unsigned int i=1; i<nevents.size(); i++) std::cout << "/" << nevents.at(i);
}
spdlog::info(" events each.");
//need this for jitter on constraints
TRandom3* rnd = new TRandom3();
rnd->SetSeed(0);//non-static seed
//initialisation for histos and arrrays
unsigned int nparams = 0;
for (unsigned int i=0; i<params.size(); i++){
nparams += params.at(i)->nparameters();
}
std::vector<double> pull_width(nparams, 0.0);
std::vector<double> pull_mean(nparams, 0.0);
std::vector<double> pull_width_sigma(nparams, 0.0);
std::vector<double> pull_mean_sigma(nparams, 0.0);
std::vector<double> pull_chisquared(nparams, 0.0);
std::vector<double> value_width(nparams, 0.0);
std::vector<double> value_mean(nparams, 0.0);
std::vector<double> value_width_sigma(nparams, 0.0);
std::vector<double> value_mean_sigma(nparams, 0.0);
std::vector<double> value_chisquared(nparams, 0.0);
std::vector<double> error_width(nparams, 0.0);
std::vector<double> error_mean(nparams, 0.0);
std::vector<double> error_width_sigma(nparams, 0.0);
std::vector<double> error_mean_sigma(nparams, 0.0);
std::vector<double> error_chisquared(nparams, 0.0);
std::vector<std::vector<double> > errors(nparams, std::vector<double>());
std::vector<std::vector<double> > errors_up(nparams, std::vector<double>());
std::vector<std::vector<double> > errors_down(nparams, std::vector<double>());
std::vector<std::vector<double> > values(nparams, std::vector<double>());
std::vector<std::vector<double> > nominal_errors(nparams, std::vector<double>());
std::vector<std::vector<double> > nominal_values(nparams, std::vector<double>());
std::vector<int> return_values(nruns);
std::vector<std::vector<std::vector<double> > > corrs(nparams, std::vector<std::vector<double> >());
fcnc::fitter fit(opts);
for (unsigned int i=0; i<pdfs.size(); i++){
pdfs.at(i)->init(params.at(i));
}
fit.set_common_parameters(common_params);
for (unsigned int i=0; i < nruns; i++) {
spdlog::info("Starting run no. {0:d}", i + 1);
//run_no = i;
std::vector< std::vector<event> > temp_events;
for (unsigned int j=0; j<gens.size(); j++){
std::vector<event> ev = gens.at(j)->generate(nevents.at(j), params.at(j), pdfs.at(j));
temp_events.push_back(ev);
}
std::vector< std::vector<event>* > events;
for (unsigned int j=0; j<gens.size(); j++){
events.push_back(&temp_events.at(j));
}
std::string num;
std::stringstream out;
out << (i+1);
num = out.str();
int result = 0;
//in the case of constraints, jitter the mean value
for (unsigned int j = 0; j < params.size(); j++){
for (unsigned int k = 0; k < params.at(j)->nparameters(); k++){
parameter* param = params.at(j)->get_parameter(k);
double shift = rnd->Rndm() > 0.5 ? -fabs(rnd->Gaus(0.0, param->get_previous_error_low())) : fabs(rnd->Gaus(0.0, param->get_previous_error_high()));//TODO, actually should probably use PDG method
if (param->get_gaussian_constraint()){
param->set_previous_measurement(param->get_start_value() + shift);//rnd->Gaus(0.0, sigma));
}
}
}
if (opts->eos_bsz_ff){
TMatrixD mU = fcnc::get_bsz_mu_invcov();
std::vector<double> rndvec(21, 0.0);
for (unsigned int i=0; i<21; i++){
rndvec.at(i) = rnd->Gaus(0.0, 1.0);
}
std::vector<double> shiftvec(21, 0.0);
for (unsigned int i=0; i<21; i++){
for (unsigned int j=0; j<21; j++){
shiftvec.at(i) += mU(j,i)*rndvec.at(j);//new order, corrected and tested
}
}
for (unsigned int j = 0; j < params.size(); j++){
if (params.at(j)->get_parameter("a0_0") != 0){
//TODO: jitter according to covariance matrix given
//std::vector<double> coeffvec(21, 0.0);// = nominal;//fcnc::legendre_coefficients_nominal;
for (unsigned int i=0; i<21; i++){
parameter* param = 0;
switch (i) {
case 0 : param = params.at(j)->get_parameter("a0_0"); break;
case 1 : param = params.at(j)->get_parameter("a0_1"); break;
case 2 : param = params.at(j)->get_parameter("a0_2"); break;
case 3 : param = params.at(j)->get_parameter("a1_0"); break;
case 4 : param = params.at(j)->get_parameter("a1_1"); break;
case 5 : param = params.at(j)->get_parameter("a1_2"); break;
//case 6 : param = params.at(j)->get_parameter(""); break;
case 7 : param = params.at(j)->get_parameter("a12_1"); break;
case 8 : param = params.at(j)->get_parameter("a12_2"); break;
case 9 : param = params.at(j)->get_parameter("v_0"); break;
case 10 : param = params.at(j)->get_parameter("v_1"); break;
case 11 : param = params.at(j)->get_parameter("v_2"); break;
case 12 : param = params.at(j)->get_parameter("t1_0"); break;
case 13 : param = params.at(j)->get_parameter("t1_1"); break;
case 14 : param = params.at(j)->get_parameter("t1_2"); break;
//case 15 : param = params.at(j)->get_parameter(""); break;
case 16 : param = params.at(j)->get_parameter("t2_1"); break;
case 17 : param = params.at(j)->get_parameter("t2_2"); break;
case 18 : param = params.at(j)->get_parameter("t23_0"); break;
case 19 : param = params.at(j)->get_parameter("t23_1"); break;
case 20 : param = params.at(j)->get_parameter("t23_2"); break;
};
if (param != 0){
param->set_previous_measurement(param->get_start_value() + shiftvec.at(i));
}
}
}
}
}
//perform the actual fit
result = fit.fit(pdfs, params, events, num);
return_values.at(i) = result;
if (result != 300 && opts->repeat_on_fail) {
spdlog::error("Fit failed, repeating run");
for (unsigned int j = 0; j < params.size(); j++){
params.at(j)->reset_parameters();
}
i--;
continue;
}
//extract the parameters from the fit
unsigned int start_param = 0;
for (unsigned int j = 0; j < params.size(); j++) {
for (unsigned int k = 0; k < params.at(j)->nparameters(); k++){
parameter* param = params.at(j)->get_parameter(k);
unsigned int idx = start_param+k;
values.at(idx).push_back(param->get_value());
errors.at(idx).push_back(param->get_error());
errors_up.at(idx).push_back(param->get_error_up());
errors_down.at(idx).push_back(param->get_error_down());
corrs.at(idx).push_back(param->correlations);//for some, this is empty
}
start_param += params.at(j)->nparameters();
}
//todo whats this? //I don't know, David. Sincerely, Renata
for (unsigned int j = 0; j < nparams; j++){
nominal_values.at(j).push_back(0.0);
nominal_errors.at(j).push_back(0.0);
}
//Update pull histos every 10 steps or when finished.
//if ((i+1 >= 100) && (((i+1)%100 == 0) || (i+1 == nruns)))
if (i+1 == nruns) {
//This should be done a little differently:
//recreate histos every time, use min and max values as axis.
start_param = 0;
for (unsigned int j = 0; j < params.size(); j++){//this plots the pull histos
for (unsigned int k = 0; k < params.at(j)->nparameters(); k++){//this plots the pull histos
parameter* par = params.at(j)->get_parameter(k);
if (par->get_step_size() != 0.0) {
unsigned int idx = start_param+k;
update_pull(par, values.at(idx),
errors.at(idx),
pull_mean[idx], pull_mean_sigma[idx],
pull_width[idx], pull_width_sigma[idx],
pull_chisquared[idx]);
update_value(par, values.at(idx), errors.at(idx),
value_mean[idx], value_mean_sigma[idx],
value_width[idx], value_width_sigma[idx],
value_chisquared[idx]);
update_error(par, values.at(idx), errors.at(idx),
error_mean[idx], error_mean_sigma[idx],
error_width[idx], error_width_sigma[idx],
error_chisquared[idx]);
}
}
start_param += params.at(j)->nparameters();
}
}
for (unsigned int j = 0; j < params.size(); j++){
params.at(j)->reset_parameters();
}
spdlog::info("Run {0:d} finished", i + 1);
}
//delete rnd;
//save result trees to root file
//TFile* output;
output->cd();
int param_index = 0;
unsigned int start_param = 0;
for (unsigned int j = 0; j < params.size(); j++){
for (unsigned int k = 0; k < params.at(j)->nparameters(); k++){
parameter* param = params.at(j)->get_parameter(k);
unsigned int idx = start_param+k;
//for (unsigned int j = 0; j < nparams; j++)//this gives nice output
if (param->get_step_size() != 0.0) {//todo common parameters, only save once...
std::string parname(param->get_name());
std::string pardesc(param->get_description());
TTree* t = new TTree(parname.c_str(), pardesc.c_str());
double value, error, error_up, error_down, start_value, nominal_value, nominal_error;
int run, migrad, status_cov;
double tmp_corr[corrs.at(idx).at(0).size()];
t->Branch("run",&run,"run/I");
t->Branch("value",&value,"value/D");
t->Branch("error",&error,"error/D");
t->Branch("error_up",&error_up,"error_up/D");
t->Branch("error_down",&error_down,"error_down/D");
t->Branch("start_value",&start_value,"start_value/D");
t->Branch("migrad",&migrad,"migrad/I");
t->Branch("status_cov",&status_cov,"status_cov/I");
t->Branch("nominal_value",&nominal_value,"nominal_value/D");
t->Branch("nominal_error",&nominal_error,"nominal_error/D");
t->Branch("index",&param_index, "index/I");
std::string corr_string = "correlations";
std::stringstream corr_stream;
corr_stream << "correlations[" << corrs.at(idx).at(0).size() << "]/D";
t->Branch("correlations",&tmp_corr,corr_stream.str().c_str());
for (unsigned int i=0; i<nruns; i++){
run = i;
if (param->is_blind()){
value = values.at(idx).at(i) + param->get_blinding_delta();//TODO add delta
}
else{
value = values.at(idx).at(i);//TODO add delta
}
error = errors.at(idx).at(i);
if (param->is_blind()){
nominal_value = nominal_values.at(idx).at(i) + param->get_blinding_delta();
}
else{
nominal_value = nominal_values.at(idx).at(i);
}
nominal_error = nominal_errors.at(idx).at(i);
error_up = errors_up.at(idx).at(i);
error_down = errors_down.at(idx).at(i);
if (param->is_blind()){
start_value = param->get_start_value() + param->get_blinding_delta();
}
else{
start_value = param->get_start_value();
}
migrad = return_values.at(i) % 100;
status_cov = return_values.at(i) / 100;
//corr = corrs.at(idx).at(i);
for (unsigned int l = 0; l < corrs.at(idx).at(i).size(); l++){
tmp_corr[l] = corrs.at(idx).at(i).at(l);
}
t->Fill();
}
t->Write();
delete t;
param_index++;
}
}
start_param += params.at(j)->nparameters();
}
//latex output
bool blind = false;
for (unsigned int j = 0; j < params.size(); j++){
if (!params.at(j)->is_blind()) blind = true;
}
spdlog::info("Toy Study results");
if (!blind){
myFile <<"\\begin{tabular}{|cccccccc|}\\hline" << std::endl;
myFile <<"\\# & parameter & Mean Value & Mean Width & Mean Error & Error Width & Pull Mean & Pull Width \\\\ \\hline \\hline" << std::endl;
start_param = 0;
for (unsigned int j = 0; j < params.size(); j++)
{
for (unsigned int k = 0; k < params.at(j)->nparameters(); k++)
{
parameter* param = params.at(j)->get_parameter(k);
unsigned int idx = start_param+k;
if (param->get_step_size() != 0.0){
std::string partex = param->get_description();
myFile <<std::setw(2) << idx << " & $" << std::setw(22) << partex << "$ & $"
<< std::fixed << std::setprecision(4)
<< std::setw(7) << value_mean[idx] << " \\pm " << std::setw(7) << value_mean_sigma[idx] << "$ & $"
<< std::setw(7) << value_width[idx] << " \\pm " << std::setw(7) << value_width_sigma[idx] << "$ & $"
<< std::setw(7) << error_mean[idx] << " \\pm " << std::setw(7) << error_mean_sigma[idx] << "$ & $"
<< std::setw(7) << error_width[idx] << " \\pm " << std::setw(7) << error_width_sigma[idx] << "$ & $"
<< std::setw(7) << pull_mean[idx] << " \\pm " << std::setw(7) << pull_mean_sigma[idx] << "$ & $"
<< std::setw(7) << pull_width[idx] << " \\pm " << std::setw(7) << pull_width_sigma[idx] << "$ \\\\"
<< std::endl;
}
}
start_param += params.at(j)->nparameters();
}
myFile <<"\\hline\\end{tabular}" << std::endl;
}
delete rnd;
//Close Latex file
myFile.close();
}