EWP-BplusToKstMuMu-AngAna/Code/FCNCFitter/sources/Params/parameters.hh

246 lines
8.9 KiB
C++
Executable File

/**
* @file parameters.hh
* @author Christoph Langenbruch, Renata Kopecna
* @date 2009-03-18
*
*/
#ifndef PARAMETERS_H
#define PARAMETERS_H
#include <string>
#include <vector>
namespace fcnc {
class parameters;
/// The parameter class stores the different attributes of a parameter used in the analysis, e.g. the name, start value and the parameter range.
class parameter {
friend class parameters;
friend class feldman_cousins;
private:
///blind this parameter
bool blind;
///blinding string
std::string blinding_string;
///blinding delta, never look at this
double blinding_delta;
///blinding range
double blinding_scale;
///This name is supplied as the parameter name to minuit. Please give every parameter a different name.
std::string name;
///The parameter description is used by the plotter for plot captions and axis titles.
std::string description;
///The start value of the parameter. After every step in the toy study, the parameter is reset to this value.
double start_value;
///The current value of the parameter
double value;
///The minimum possible value for the parameter
double min;
///The maximum possible value for the parameter
double max;
///The initial step size used by minuit
double step_size;
///The error of the fitted result
double error;
///asymmetric errors if a minos error analysis has been performed
double error_up;
///asymmetric errors if a minos error analysis has been performed
double error_down;
///the index of this parameter in the params array of the parameter set
int index;
///should the parameter float without limits?
bool unlimited;
///this has been the error of a previous measurement
double previous_error_low;
double previous_error_high;
///previous measurement, this can be different from the start value, e.g. when running a toy study
double previous_measurement;
///do we want to vary the parameter so that it is compatible with an earlier measurement
bool gaussian_constraint;
bool do_minos;
///pointer to parent parameterset this parameter was added to!
parameters* parent;
public:
///
void set_parent(parameters* p) {parent = p;};
//correlations
std::vector<double> correlations;
///public set routines
void set_name(std::string n) {name = n;};
void set_min(double m) {min = m;};
void set_max(double m) {max = m;};
void set_step_size(double s) {step_size = s;};
void set_value(double v) {value = v;};
void set_start_value(double v) {start_value = v;};
//void set_true_value(double v) {true_value = v;};
void set_description(std::string d) {description = d;};
void set_error(double e) {error = e;};
void set_error_down(double e) {error_down = e;};
void set_error_up(double e) {error_up = e;};
void set_unlimited(bool u) {unlimited = u;};
void set_index(int idx) {index = idx;};
void set_previous_measurement(double m) {previous_measurement = m;};
void set_previous_error_low(double e) {previous_error_low = e;};
void set_previous_error_high(double e) {previous_error_high = e;};
void set_values_n_errors(double v, double e);
void reset_correlations();
void set_correlation(double corr, unsigned int idx);
void set_correlations(std::vector<double> corrs, unsigned int first, unsigned int last, double scalefactor = 1.0);
///set blinding string
void set_blinding_string(std::string s);
void set_minos(bool minos) { do_minos = minos; };
bool get_minos() { return do_minos; };
void set_blinding(bool b, double b_scale, bool is_angle=false, std::string b_string="DefaultBlinder");
///set all values which make sense on initialisation
void init(double v, double min, double max, double stepsize)
{
set_value(v);
start_value = v;
set_min(min);
set_max(max);
set_step_size(stepsize);
set_error(0.0);
set_error_up(0.0);
set_error_down(0.0);
set_unlimited(false);
set_minos(false);
gaussian_constraint = false;
previous_measurement = v;
correlations.clear();
};
void init_fixed(double v){
init(v, v-0.01, v+0.01, 0.0);
//This eaquals to the previous init with limits of v-0.01, v+0.01
//Not sure if there is a < or <= further in the code, so let's play it safe
}
void init(double v, double min, double max, double stepsize, double previous_measurement_error, bool constrain)
{
init(v, min, max, stepsize);
previous_error_low = previous_measurement_error;
previous_error_high = previous_measurement_error;
gaussian_constraint = constrain;
}
void init(double v, double min, double max, double stepsize, double previous_measurement_error_low, double previous_measurement_error_high, bool constrain)
{
init(v, min, max, stepsize);
previous_error_low = previous_measurement_error_low;
previous_error_high = previous_measurement_error_high;
gaussian_constraint = constrain;
}
void init_unlimited( double v, double min, double max, double stepsize, bool nolimits)
{
init(v, min, max, stepsize);
unlimited = nolimits;
};
///public get routines
std::string get_name() const {return name;};
const char* get_mn_name() const {return get_name().c_str();};
double get_min() const {return min;};
double get_max() const {return max;};
double get_blinding_delta() const {return blinding_delta;};
double get_step_size() const {return step_size;};
double get_value() const {return value;};
double get_start_value() const {return start_value;};
//double get_true_value() const {return true_value;};
double get_previous_error() const {return 0.5*(previous_error_low+previous_error_high);};
double get_previous_error_low() const {return previous_error_low;};
double get_previous_error_high() const {return previous_error_high;};
double get_previous_measurement() const {return previous_measurement;};
std::string get_description() const {return description;};
bool get_unlimited() const {return unlimited;};
bool get_gaussian_constraint() const {return gaussian_constraint;};
std::string get_root_name() const;
///public set routines
void set_constant() {step_size = 0.0;};
double operator() () const {return value;};
double get_error() const {return error;};
double get_error_up() const {return error_up;};
double get_error_down() const {return error_down;};
int get_index() const {return index;};
void reset_start() {value = start_value; error = 0.0;};
///default constructor
parameter(std::string n, std::string d):
blind(false),
blinding_string("DefaultBlinder"),
blinding_delta(0.0),
name(n),
description(d),
start_value(0.0),
value(0.0),
min(-1.0),
max(+1.0),
step_size(0.001),
error(0.0),
error_up(0.0),
error_down(0.0),
index(-1),
unlimited(false),
previous_error_low(0.0),
previous_error_high(0.0),
previous_measurement(0.0),
gaussian_constraint(false)
{};
///normal constructor
parameter(std::string n, std::string d, double v,
double minimum, double maximum, double stepsize = 0.0, bool nolimits=false):
blind(false),
blinding_string("DefaultBlinder"),
blinding_delta(0.0),
name(n),
description(d),
start_value(v),
// true_value(v),
value(v),
min(minimum),
max(maximum),
step_size(stepsize),
error(0.0),
error_up(0.0),
error_down(0.0),
index(-1),
unlimited(nolimits),
gaussian_constraint(false)
{};
bool is_blind() {
return blind;
};
};
///The parameters class stores a collection of parameters used in the analysis. Every analysis should implement its own set e.g. bs2jpsiphi_parameters
class parameters
{
private:
///this vector holds the different parameters
std::vector<parameter*> params;
protected:
///Add a certain parameter to the params vector.
void add_parameter(parameter* param);
public:
bool is_blind() const;
virtual ~parameters() {};
///Method gives back he number of parameters
unsigned int nparameters() const;
///Methos returns a pointer to parameter with index i
parameter* get_parameter(unsigned int i) const;
///returns parameter with specific name
parameter* get_parameter(std::string name) const;
///Resets all parameters to their start values
void reset_parameters();
///Method that prints the parameter set, the current values, errors and the deviation from the start value in sigma
void print_parameters(bool latex_output=true) const;
///fix all parameters
void fix_parameters();
///set all parameters to current values! Careful with this, please.
void take_current_as_start();
};
}
#endif