EWP-BplusToKstMuMu-AngAna/Code/FCNCFitter/sources/Run/feldman_cousins.cc

630 lines
30 KiB
C++

/**
* @file feldman_cousins.hh
* @author Christoph Langenbruch, David Gerick, Renata Kopecna
* @date 2021-01-12
*
*/
#include <feldman_cousins.hh>
//TODO: removed what all is unused
#include <iostream>
#include <complex>
#include <assert.h>
#include <event.hh>
#include <parameters.hh>
#include <funcs.hh>
#include <pdf.hh>
#include <plotter.hh>
#include <options.hh>
#include <bu2kstarmumu_generator.hh>
#include <fitter.hh>
#include "folder.hh"
#include <thread>
#include <mutex>
#include <TMinuit.h>
#include <TFile.h>
#include <TTree.h>
#include <TRandom3.h>
#include <TMatrix.h>
#include <TH1D.h>
#include <TCanvas.h>
#include <TROOT.h>
#include <TStyle.h>
#include <TVector.h>
#include <TMatrixD.h>
#include <TMatrixDSym.h>
#include <TMatrixTSym.h>
#include <TMatrixT.h>
#include <TDecompChol.h>
#include <spdlog.h>
bool fcnc::feldman_cousins::fc_1d(std::string parname, unsigned int nsteps, double parmin, double parmax, unsigned int ntoys, unsigned int pdfidx,
std::vector<pdf*> probs, std::vector<parameters*> params, generator* gen, fitter* f,
std::vector<std::vector<event> *> events, unsigned int bin, int from, int to){
std::ostringstream sout;
bool TwoBins = false;
if(opts->TheQ2binsmin.size() == 8) TwoBins = false;
else if(opts->TheQ2binsmin.size() == 2) TwoBins = true;
else assert(opts->TheQ2binsmin.size() == 2 || opts->TheQ2binsmin.size() == 8);
sout << "FCresult" << (TwoBins ? "_2BINS_" : "") << bin << "_" << parname << "_" << from << "_" << to << ".root";
struct stat buffer;
if(stat (sout.str().c_str(), &buffer) == 0){
spdlog::warn("[SKIP]\t\tFC job already run as root-file '" + sout.str() + "' exists, continue to next job!");
return false;
}
else{
spdlog::info("Feldman-Cousins study for parameter="+ parname + " in q2bin={0:d}", bin);
}
// if(!opts->full_angular)
// opts->always_generate_full_angular = false;
bool cache_minos = opts->minos_errors;
bool cache_hesse = opts->hesse_postrun;
bool cache_sq_hesse = opts->squared_hesse;
bool cache_shift = opts->shift_lh;
//int cache_print = spdlog::default_logger_raw()->level();
const unsigned int nPDF = probs.size();
assert(params.size() == nPDF);
assert(events.size() == nPDF);
assert(pdfidx < nPDF);
//temp save parameter set
unsigned int nparameters = params.at(pdfidx)->nparameters();
std::vector<std::vector<double> > smvalues (nPDF, std::vector<double> (nparameters, 0.0));
for(unsigned int n = 0; n < nPDF; n++){
for (unsigned int k=0; k<nparameters; k++){
smvalues.at(n).at(k) = params.at(n)->get_parameter(k)->get_value();
}
}
parameter* par = params.at(pdfidx)->get_parameter(parname);
if (par != 0){
opts->minos_errors = false;
opts->squared_hesse = false;
opts->hesse_postrun = false;
opts->simplex_prerun = false;
opts->shift_lh = false;
opts->minuit_strategy = 2.0;
//fitter f(opts);
int statusdatafloated = f->fit(probs, params, events);
double lhdatafloated = f->likelihood();
double valuedatafloated = par->get_value();
spdlog::info("Data fit finished with -2logLh = {0:f}",lhdatafloated );
std::vector<std::vector<double> > floatingvalues(nPDF, std::vector<double> (nparameters, 0.0));
std::vector<std::vector<double> > prev_error_low(nPDF, std::vector<double> (nparameters, 0.0));
std::vector<std::vector<double> > prev_error_high(nPDF, std::vector<double> (nparameters, 0.0));
std::vector<std::vector<double> > prev_meas(nPDF, std::vector<double> (nparameters, 0.0));
std::vector<std::vector<bool> > isConstraint(nPDF, std::vector<bool> (nparameters, false));
for(unsigned int n = 0; n < nPDF; n++){
for (unsigned int k=0; k<nparameters; k++){
floatingvalues.at(n).at(k) = params.at(n)->get_parameter(k)->get_value();
prev_error_low.at(n).at(k) = params.at(n)->get_parameter(k)->get_previous_error_low();
prev_error_high.at(n).at(k) = params.at(n)->get_parameter(k)->get_previous_error_high();
prev_meas.at(n).at(k) = params.at(n)->get_parameter(k)->get_previous_measurement();
isConstraint.at(n).at(k) = params.at(n)->get_parameter(k)->get_gaussian_constraint();
}
}
for(unsigned int n = 0; n < nPDF; n++){
for (unsigned int k=0; k<nparameters; k++){
if(isConstraint.at(n).at(k)){
spdlog::info("[PDF{0:d}][PAR{1:d}]\tpar={2:s}: prev_measurement={3:f} prev_low={4:f}prev_high={5:f}",
n, k, params.at(n)->get_parameter(k)->get_name(),
prev_meas.at(n).at(k),prev_error_low.at(n).at(k) ,prev_error_high.at(n).at(k));
}
}
}
//opts->minuit_strategy = 1.0;//this should be 2 for the fixed data fit I think
if (from < 0) from = 0;
if (to > int(nsteps) || to < 0) to = nsteps;
std::vector<double> lhdatafixed(to-from, 0.0);
std::vector<int> statusdatafixed(to-from, 0);
std::vector<std::vector<double> > lhtoysfixed;
std::vector<std::vector<double> > lhtoysfloated;
std::vector<std::vector<int> > statustoysfixed;
std::vector<std::vector<int> > statustoysfloated;
std::vector<std::vector< double> > params_dfloated (nPDF, std::vector< double> (nparameters, 0.0));
std::vector<std::vector<std::vector<double>>>params_dfixed(nPDF,std::vector<std::vector<double>>
(to-from, std::vector<double>(nparameters, 0.0)));
std::vector<std::vector<std::vector< std::vector< double> > > > params_tfixed (nPDF,
std::vector<std::vector< std::vector< double> > > (to - from,
std::vector< std::vector< double> > (ntoys,
std::vector< double> (nparameters, 0.0))));
std::vector<std::vector<std::vector< std::vector< double> > > > params_tfloated (nPDF,
std::vector<std::vector< std::vector< double> > > (to - from,
std::vector< std::vector< double> > (ntoys,
std::vector< double> (nparameters, 0.0))));
//buffer floated data values
for(unsigned int n = 0; n < nPDF; n++){
for (unsigned int k=0; k<nparameters; k++){
params_dfloated.at(n).at(k) = params.at(n)->get_parameter(k)->get_value();
}
}
std::string pardesc = par->get_description();
for (int j=from; j<to; j++){//loop over steps
double parcur = parmin+(j+0.5)*(parmax-parmin)/nsteps;
spdlog::info("[STEP]\tEvaluating step {0:d}out of {1:d} steps!",j-from+1, to-from);
spdlog::info("[INFO]\tStudying point "+parname+"={0:f}",parcur);
//init parameters from floating fit values
for(unsigned int n = 0; n < nPDF; n++){
for(unsigned int k=0; k<nparameters; k++){
if(isConstraint.at(n).at(k)){
params.at(n)->get_parameter(k)->init(floatingvalues.at(n).at(k), params.at(n)->get_parameter(k)->get_min(), params.at(n)->get_parameter(k)->get_max(),
params.at(n)->get_parameter(k)->get_step_size(), prev_error_low.at(n).at(k), prev_error_high.at(n).at(k));
params.at(n)->get_parameter(k)->set_previous_measurement(prev_meas.at(n).at(k));
}
else{
params.at(n)->get_parameter(k)->init(floatingvalues.at(n).at(k), params.at(n)->get_parameter(k)->get_min(), params.at(n)->get_parameter(k)->get_max(),
params.at(n)->get_parameter(k)->get_step_size());
}
}
params.at(n)->reset_parameters();
}
for(unsigned int n = 0; n < nPDF; n++){
params.at(n)->get_parameter(parname)->init(parcur, parmin, parmax, 0.0);
}
opts->minuit_strategy = 2.0;//more precise for fixed data fit (used for lh)
opts->hesse_postrun = false;
opts->simplex_prerun = false;
spdlog::info("Start fit with fixed parameter");
statusdatafixed.at(j-from) = f->fit(probs, params, events);
lhdatafixed.at(j-from) = f->likelihood();
spdlog::info("[DONE]\tFinished fit with fixed parameter");
opts->minuit_strategy = 1.0;//less precise for toys -> speed more important
opts->hesse_postrun = false;
opts->simplex_prerun = false;
std::vector<std::vector<double> > fitvalues (nPDF, std::vector<double> (nparameters, 0.0));
for(unsigned int n = 0; n < nPDF; n++){
//parameters from fixed point
for (unsigned int k=0; k<nparameters; k++){
fitvalues.at(n).at(k) = params.at(n)->get_parameter(k)->get_value();
}
//buffer fixed data values
for (unsigned int k=0; k<nparameters; k++){
params_dfixed.at(n).at(j-from).at(k) = params.at(n)->get_parameter(k)->get_value();
}
}
//make all toys with these params!
std::vector<std::vector<std::vector<event> > >toys(ntoys, std::vector<std::vector<event> > ());
spdlog::info("Start generating toys");
for (unsigned int k = 0; k < ntoys; k++){
spdlog::debug("[TOYS]\tGenerating toy sample {0:d}/{1:d}",k+1,ntoys );
for(unsigned int n = 0; n < nPDF; n++){
std::vector<event> toy = gen->generate(events.at(n)->size(), params.at(n), probs.at(n));
if(!opts->full_angular){
fcnc::folder fldr(opts);
for(UInt_t e = 0; e < toy.size(); e++){
fldr.fold(&toy.at(e));
if(toy.at(e).m < 1000.){
spdlog::warn("[CORRUPT]\tEvent={0:d} pdf={0:f} toy={0:f}",e, n, k );
spdlog::warn("[CORRUPT]\tctl={0:f} ctk={0:f} phi={0:f} q2={0:f}",
toy.at(e).costhetal, toy.at(e).costhetak, toy.at(e).phi, toy.at(e).q2 );
}
}
}
toys.at(k).push_back(toy);
}
}
spdlog::info("[DONE]\tGenerating toys");
//init parameters from fixed point
for(unsigned int n = 0; n < nPDF; n++){
for(unsigned int k=0; k<nparameters; k++){
if(isConstraint.at(n).at(k)){
params.at(n)->get_parameter(k)->init(fitvalues.at(n).at(k), params.at(n)->get_parameter(k)->get_min(), params.at(n)->get_parameter(k)->get_max(),
params.at(n)->get_parameter(k)->get_step_size(), prev_error_low.at(n).at(k), prev_error_high.at(n).at(k));
params.at(n)->get_parameter(k)->set_previous_measurement(prev_meas.at(n).at(k));
}
else{
params.at(n)->get_parameter(k)->init(fitvalues.at(n).at(k), params.at(n)->get_parameter(k)->get_min(), params.at(n)->get_parameter(k)->get_max(),
params.at(n)->get_parameter(k)->get_step_size());
}
}
}
//fit toys repeatedly
std::vector<double> toysfixed;
std::vector<double> toysfloated;
std::vector<int> statusfixed;
std::vector<int> statusfloated;
spdlog::info("Start fitting all toys");
for (unsigned int k=0; k<ntoys; k++){
for(unsigned int n = 0; n < nPDF; n++){
params.at(n)->reset_parameters();//these are not the fitted/generated parameters->fix, they should float however, so should be ok?
}
for(unsigned int n = 0; n < nPDF; n++){
params.at(n)->get_parameter(parname)->init(parcur, parmin, parmax, 0.0);
}
//save pointers to toy events into vector:
std::vector<std::vector<event> * > leToys;
for(unsigned int n = 0; n < nPDF; n++){
leToys.push_back(&toys.at(k).at(n));
}
//fit with fixed parameter
spdlog::info("[TOYS]\tFitting fixed toy sample {0:d}/{1:d} at step {2:d}/{3:d}",
k+1, ntoys, j-from+1, to-from );
int resultfixed = f->fit(probs, params, leToys);
toysfixed.push_back(f->likelihood());
statusfixed.push_back(resultfixed);
//buffer fixed toy values
for(unsigned int n = 0; n < nPDF; n++){
for (unsigned int l=0; l<nparameters; l++){
params_tfixed.at(n).at(j-from).at(k).at(l) = params.at(n)->get_parameter(l)->get_value();
}
params.at(n)->reset_parameters();
}
for(unsigned int n = 0; n < nPDF; n++){
params.at(n)->get_parameter(parname)->init(parcur, parmin, parmax, 0.01);
}
//fit with floated parameter
spdlog::info("[TOYS]\tFitting freed toy sample0:d}/{1:d} at step {2:d}/{3:d}",
k+1, ntoys, j-from+1, to-from );
int resultfloated = f->fit(probs, params, leToys);
toysfloated.push_back(f->likelihood());
statusfloated.push_back(resultfloated);
//buffer fixed toy values
for(unsigned int n = 0; n < nPDF; n++){
for (unsigned int l=0; l<nparameters; l++){
params_tfloated.at(n).at(j-from).at(k).at(l) = params.at(n)->get_parameter(l)->get_value();
}
}
}
lhtoysfixed.push_back(toysfixed);
lhtoysfloated.push_back(toysfloated);
statustoysfixed.push_back(statusfixed);
statustoysfloated.push_back(statusfloated);
}// end loop over steps
spdlog::info("[DONE]\tFitting all toys");
spdlog::debug("tLoop over all {0:d} steps completed. Writing results to file!",nsteps );
//save to root file
TFile* fout = new TFile(sout.str().c_str(), "RECREATE");
fout->cd();
TTree* t = new TTree(parname.c_str(), pardesc.c_str());
int pdf=0, step=0, statustfixed=0, statustfloated=0, toy=0, statusdfixed=0, statusdfloated=0;
double value=0.0, lhdfloated=lhdatafloated, lhdfixed=0.0, lhtfixed=0.0, lhtfloated=0.0;
t->Branch("bin",&bin,"bin/I");
t->Branch("pdf",&pdf,"pdf/I");
t->Branch("step",&step,"step/I");
t->Branch("value",&value,"value/D");
t->Branch("toy",&toy,"toy/I");
t->Branch("statusdatafixed",&statusdfixed,"statusdatafixed/I");
t->Branch("statusdatafloated",&statusdfloated,"statusdatafloated/I");
t->Branch("statustoyfixed",&statustfixed,"statustoyfixed/I");
t->Branch("statustoyfloated",&statustfloated,"statustoyfloated/I");
t->Branch("lhdatafloated",&lhdfloated,"lhdatafloated/D");
t->Branch("valuedatafloated",&valuedatafloated,"valuedatafloated/D");
t->Branch("lhdatafixed",&lhdfixed,"lhdatafixed/D");
t->Branch("lhtoyfixed",&lhtfixed,"lhtoyfixed/D");
t->Branch("lhtoyfloated",&lhtfloated,"lhtoyfloated/D");
//also save the fitted values
std::vector<double> tfloated(nparameters, 0.0), tfixed(nparameters, 0.0), dfloated(nparameters, 0.0), dfixed(nparameters, 0.0);
for (unsigned int k = 0; k < nparameters; k++){
fcnc::parameter* param = params.at(pdfidx)->get_parameter(k);
if (param->get_step_size() != 0.0){
std::string parname(param->get_name());
std::string pardesc(param->get_description());
//TTree* t = new TTree(parname.c_str(), pardesc.c_str());
t->Branch((std::string("datafixed_")+parname).c_str(),&dfixed.at(k),(std::string("datafixed_")+parname+std::string("/D")).c_str());
t->Branch((std::string("datafloated_")+parname).c_str(),&dfloated.at(k),(std::string("datafloated_")+parname+std::string("/D")).c_str());
t->Branch((std::string("toyfixed_")+parname).c_str(),&tfixed.at(k),(std::string("toyfixed_")+parname+std::string("/D")).c_str());
t->Branch((std::string("toyfloated_")+parname).c_str(),&tfloated.at(k),(std::string("toyfloated_")+parname+std::string("/D")).c_str());
}
}
for(unsigned int n = 0; n < nPDF; n++){
pdf = n; //TODO: what is this supposed to do?
for (int j=from; j<to; j++){
step = j;
for (unsigned int k=0; k<ntoys; k++){
toy = k;
value = parmin+(j+0.5)*(parmax-parmin)/nsteps;
statustfixed = statustoysfixed.at(j-from).at(k);
statustfloated = statustoysfloated.at(j-from).at(k);
statusdfloated = statusdatafloated;
statusdfixed = statusdatafixed.at(j-from);
lhtfixed = lhtoysfixed.at(j-from).at(k);
lhtfloated = lhtoysfloated.at(j-from).at(k);
lhdfixed = lhdatafixed.at(j-from);
//lhdfloated = lhdatafloated; //always the same
for (unsigned int l = 0; l < nparameters; l++){
tfloated.at(l) = params_tfloated.at(n).at(j-from).at(k).at(l);
tfixed.at(l) = params_tfixed.at(n).at(j-from).at(k).at(l);
dfloated.at(l) = params_dfloated.at(n).at(l);
dfixed.at(l) = params_dfixed.at(n).at(j-from).at(l);
}
t->Fill();
}
}
}
t->Write();
fout->Write();
fout->Close();
delete fout;
/*
//analyse results
std::string suffix = "";
TH1D* cl = new TH1D((std::string("cl")+parname+suffix).c_str(), (std::string(";")+pardesc+std::string(";Confidence level")).c_str(), nsteps, parmin, parmax);
TH1D* lh = new TH1D((std::string("lh")+parname+suffix).c_str(), (std::string(";")+pardesc+std::string(";Confidence level")).c_str(), nsteps, parmin, parmax);
for (unsigned int j=0; j<nsteps; j++)
{
unsigned int nlarger = 0;
for (unsigned int k=0; k<ntoys; k++)
{
double dtoy = lhtoysfixed.at(j).at(k)-lhtoysfloated.at(j).at(k);
double ddata = lhdatafixed.at(j)-lhdatafloated;
if (dtoy > ddata)
nlarger++;
}
lh->SetBinContent(j+1, TMath::Erf(sqrt(lhdatafixed.at(j)-lhdatafloated)/sqrt(2.0)));
cl->SetBinContent(j+1, 1.0-double(nlarger)/ntoys);
}
double low = parmin;
const double thecl = 0.683;
if (cl->GetBinContent(1) > thecl)//???
{
for (int i=0; i<nsteps; i++)
if (cl->GetBinContent(i+1) > thecl && cl->GetBinContent(i+2) < thecl)
{
low = cl->GetBinCenter(i+1) + (thecl-cl->GetBinContent(i+1))*(cl->GetBinCenter(i+2)-cl->GetBinCenter(i+1))/(cl->GetBinContent(i+2)-cl->GetBinContent(i+1));
break;
}
}
double high = parmax;
if (cl->GetBinContent(nsteps) > thecl)
{
for (int i=nsteps-1; i>=0; i--)
if (cl->GetBinContent(i+1) < thecl && cl->GetBinContent(i+2) > thecl)
{
high = cl->GetBinCenter(i+1) + (thecl-cl->GetBinContent(i+1))*(cl->GetBinCenter(i+2)-cl->GetBinCenter(i+1))/(cl->GetBinContent(i+2)-cl->GetBinContent(i+1));
break;
}
}
TCanvas* c1 = new TCanvas("c1", "c1", 1600, 1200);
TLine* l = new TLine();
c1->cd();
cl->SetMinimum(0.0);
cl->SetMaximum(1.1);
cl->Draw();
lh->SetLineColor(4);
lh->Draw("lsame");
l->SetLineColor(2);
l->DrawLine(low, 0.0, low, 1.1);
l->DrawLine(high, 0.0, high, 1.1);
c1->Print((std::string("plots/cl")+parname+suffix+std::string(".eps")).c_str(),"eps");
//delete cl;
delete l;
delete c1;
delete cl;
*/
}
else{
spdlog::critical("Could not find parameter "+parname);
assert(0);
}
spdlog::info("Finished Feldman-Cousins study for parameter "+ parname);
opts->hesse_postrun = cache_hesse;
opts->squared_hesse = cache_sq_hesse;
opts->minos_errors = cache_minos;
opts->shift_lh = cache_shift;
return true;
}
bool fcnc::feldman_cousins::fc_1d(std::string parname, unsigned int nsteps, double parmin, double parmax, unsigned int ntoys,
pdf* prob, parameters* params, generator* gen, fitter* f,
std::vector<event> * events, unsigned int bin, int from, int to){
std::vector<pdf *> the_probs;
the_probs.push_back(prob);
std::vector<parameters *> the_params;
the_params.push_back(params);
std::vector<std::vector<event>* > the_events;
the_events.push_back(events);
return fc_1d(parname, nsteps, parmin, parmax, ntoys, 0,
the_probs, the_params, gen, f,
the_events, bin, from, to);
}
bool fcnc::feldman_cousins::fc_2d(std::string parxname, unsigned int nstepsx, double parxmin, double parxmax,
std::string paryname, unsigned int nstepsy, double parymin, double parymax,
unsigned int ntoys, unsigned int pdfidx, //this parameter just changes output file
std::vector<pdf*> probs, std::vector<parameters*> params, generator* gen, fitter* f,
std::vector<std::vector<event> *> events, unsigned int bin, int from, int to){
spdlog::info("Feldman-Cousins study for parameters" + parxname +", " +paryname );
/*
bool cache_minos = opts->minos_errors;
bool cache_hesse = opts->hesse_postrun;
bool cache_shift = opts->shift_lh;
int cache_print = opts->print_level;
const unsigned int nPDF = probs.size();
assert(params.size() == nPDF);
assert(events.size() == nPDF);
assert(pdfidx < nPDF);
parameter* parx = params.at(pdfidx)->get_parameter(parxname);
parameter* pary = params.at(pdfidx)->get_parameter(paryname);
if (parx != 0 && pary != 0)
{
opts->minos_errors = false;
opts->hesse_postrun = false;
opts->shift_lh = false;
//fitter f(opts);
f->fit(probs, params, events);
double lhdatafloated = f.likelihood();
double valuexdatafloated = parx->get_value();
double valueydatafloated = pary->get_value();
spdlog::info("Data fit finished with -2logLh = {0:f}",lhdatafloated );
opts->print_level = -1;
//std::cout << from << " {0:f}",to << " {0:f}",from - to << std::endl;
if (from < 0)
from = 0;
if (to > int(nstepsx*nstepsy) || to < 0)
to = nstepsx*nstepsy;
std::vector<double> lhdatafixed(to-from, 0.0);
std::vector<std::vector<double> > lhtoysfixed;
std::vector<std::vector<double> > lhtoysfloated;
std::vector<std::vector<int> > statustoysfixed;
std::vector<std::vector<int> > statustoysfloated;
std::string parxdesc = parx->get_description();
std::string parydesc = pary->get_description();
for (int j=from; j<to; j++)
{
//xidx = j%nstepsx
//yidx = j/nstepsx
double parxcur = parxmin+((j%nstepsx)+0.5)*(parxmax-parxmin)/nstepsx;
double parycur = parymin+((j/nstepsx)+0.5)*(parymax-parymin)/nstepsy;
spdlog::info("Studying point" +parxname +"="+ parxcur + paryname + "=" +parycur );
params.reset_parameters();
parx->init(parxname, parxdesc, parxcur, parxmin, parxmax, 0.0);
pary->init(paryname, parydesc, parycur, parymin, parymax, 0.0);
f->fit(probs, params, events);
lhdatafixed.at(j-from) = f->likelihood();
//make all toys with these params!
std::vector<std::vector<event> > toys;
for (unsigned int k=0; k<ntoys; k++)
{
std::vector<event> toy = gen->generate(events.size(), params, prob);
toys.push_back(toy);
}
//fit toys repeatedly
std::vector<double> toysfixed;
std::vector<double> toysfloated;
std::vector<int> statusfixed;
std::vector<int> statusfloated;
for (unsigned int k=0; k<ntoys; k++)
{
params.reset_parameters();//these are not the fitted/generated parameters->fix, they should float however, so should be ok?
parx->init(parxname, parxdesc, parxcur, parxmin, parxmax, 0.0);
pary->init(paryname, parydesc, parycur, parymin, parymax, 0.0);
int resultfixed = f->fit(probs, params, &toys.at(k));
toysfixed.push_back(f->likelihood());
statusfixed.push_back(resultfixed);
params.reset_parameters();
parx->init(parxname, parxdesc, parxcur, parxmin, parxmax, 0.01);
pary->init(paryname, parydesc, parycur, parymin, parymax, 0.01);
int resultfloated = f->fit(probs, params, &toys.at(k));
toysfloated.push_back(f->likelihood());
statusfloated.push_back(resultfloated);
}
lhtoysfixed.push_back(toysfixed);
lhtoysfloated.push_back(toysfloated);
statustoysfixed.push_back(statusfixed);
statustoysfloated.push_back(statusfloated);
}
//std::cout <<"after loop" );
//save to root file
std::ostringstream sout;
sout << "FCresult_" << bin << "_" << parxname << "_" << paryname << "_" << from << "_" << to << ".root";
TFile* fout = new TFile(sout.str().c_str(), "RECREATE");
fout->cd();
TTree* t = new TTree((parxname+std::string("_")+paryname).c_str(), (std::string(";")+parxdesc+std::string(";")+parydesc).c_str());
int step=0, stepx=0, stepy=0, statustfixed=0, statustfloated=0, toy=0;
double valuex=0.0, valuey, lhdfloated=lhdatafloated, lhdfixed=0.0, lhtfixed=0.0, lhtfloated=0.0;
t->Branch("bin",&bin,"bin/I");
t->Branch("step",&step,"step/I");
t->Branch("stepx",&stepx,"stepx/I");
t->Branch("stepy",&stepy,"stepy/I");
t->Branch("valuex",&valuex,"valuex/D");
t->Branch("valuey",&valuey,"valuey/D");
t->Branch("valuexdatafloated",&valuexdatafloated,"valuexdatafloated/D");
t->Branch("valueydatafloated",&valueydatafloated,"valueydatafloated/D");
t->Branch("toy",&toy,"toy/I");
t->Branch("statustoyfixed",&statustfixed,"statustoyfixed/I");
t->Branch("statustoyfloated",&statustfloated,"statustoyfloated/I");
t->Branch("lhdatafloated",&lhdfloated,"lhdatafloated/D");
t->Branch("lhdatafixed",&lhdfixed,"lhdatafixed/D");
t->Branch("lhtoyfixed",&lhtfixed,"lhtoyfixed/D");
t->Branch("lhtoyfloated",&lhtfloated,"lhtoyfloated/D");
for (int j=from; j<to; j++)
{
for (unsigned int k=0; k<ntoys; k++)
{
step = j;
stepx = j%nstepsx;
stepy = j/nstepsx;
toy = k;
valuex = parxmin+((j%nstepsx)+0.5)*(parxmax-parxmin)/nstepsx;
valuey = parymin+((j/nstepsx)+0.5)*(parymax-parymin)/nstepsy;
statustfixed = statustoysfixed.at(j-from).at(k);
statustfloated = statustoysfloated.at(j-from).at(k);
lhtfixed = lhtoysfixed.at(j-from).at(k);
lhtfloated = lhtoysfloated.at(j-from).at(k);
lhdfixed = lhdatafixed.at(j-from);
lhdfloated = lhdatafloated;
t->Fill();
}
}
t->Write();
fout->Write();
fout->Close();
delete fout;
}
else{
if (parx == 0) spdlog::error("Could not find parameter" +parxname );
if (pary == 0) spdlog::error("Could not find parameter" +paryname );
assert(0);
}
spdlog::info("Finished Feldman-Cousins study for parameters "+parxname + "," +paryname );
opts->hesse_postrun = cache_hesse;
opts->minos_errors = cache_minos;
opts->shift_lh = cache_shift;
opts->print_level = cache_print;
*/
return true;
}
bool fcnc::feldman_cousins::fc_2d(std::string parxname, unsigned int nstepsx, double parxmin, double parxmax,
std::string paryname, unsigned int nstepsy, double parymin, double parymax,
unsigned int ntoys, //this parameter just changes output file
pdf* prob, parameters* params, generator* gen, fitter* f,
std::vector<event> * events, unsigned int bin, int from, int to){
std::vector<pdf *> the_probs;
the_probs.push_back(prob);
std::vector<parameters *> the_params;
the_params.push_back(params);
std::vector<std::vector<event>* > the_events;
the_events.push_back(events);
return fc_2d(parxname, nstepsx, parxmin, parxmax,
paryname, nstepsy, parymin, parymax,
ntoys, 0,
the_probs, the_params, gen, f,
the_events, bin, from, to);
}